Unsupervised Discovery of Demixed, Low-Dimensional Neural Dynamics across Multiple Timescales through Tensor Component Analysis

Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning.

[1]  Adam Kepecs,et al.  Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making , 2006, Nature Reviews Neuroscience.

[2]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[3]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[4]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[5]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[6]  Alexander Rivkind,et al.  Local Dynamics in Trained Recurrent Neural Networks. , 2015, Physical review letters.

[7]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[8]  Max Welling,et al.  Positive tensor factorization , 2001, Pattern Recognit. Lett..

[9]  M. Sahani,et al.  Cortical control of arm movements: a dynamical systems perspective. , 2013, Annual review of neuroscience.

[10]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[11]  Ashesh K Dhawale,et al.  Automated long-term recording and analysis of neural activity in behaving animals , 2016, bioRxiv.

[12]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[13]  Haesun Park,et al.  Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons , 2011, SIAM J. Sci. Comput..

[14]  Guangyu R. Yang,et al.  Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework , 2016, PLoS Comput. Biol..

[15]  John P. Cunningham,et al.  A High-Performance Neural Prosthesis Enabled by Control Algorithm Design , 2012, Nature Neuroscience.

[16]  William S Rayens,et al.  Structure-seeking multilinear methods for the analysis of fMRI data , 2004, NeuroImage.

[17]  Patrick Dupont,et al.  Tensor decompositions and data fusion in epileptic electroencephalography and functional magnetic resonance imaging data , 2017, WIREs Data Mining Knowl. Discov..

[18]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[19]  Xiaofeng Gong,et al.  Tensor decomposition of EEG signals: A brief review , 2015, Journal of Neuroscience Methods.

[20]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[21]  Naoshige Uchida,et al.  Demixed principal component analysis of neural population data , 2014, eLife.

[22]  M. SIAMJ. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .

[23]  F. Helmchen,et al.  Steady or changing? Long-term monitoring of neuronal population activity , 2013, Trends in Neurosciences.

[24]  Haim Sompolinsky,et al.  Optimal Degrees of Synaptic Connectivity , 2017, Neuron.

[25]  Mario Dipoppa,et al.  Suite2p: beyond 10,000 neurons with standard two-photon microscopy , 2016, bioRxiv.

[26]  M. Sahani,et al.  Nonlinearities and Contextual Influences in Auditory Cortical Responses Modeled with Multilinear Spectrotemporal Methods , 2008, The Journal of Neuroscience.

[27]  David Sussillo,et al.  Opening the Black Box: Low-Dimensional Dynamics in High-Dimensional Recurrent Neural Networks , 2013, Neural Computation.

[28]  Eero P. Simoncelli,et al.  Partitioning neuronal variability , 2014, Nature Neuroscience.

[29]  T. Komiyama,et al.  Parvalbumin-Expressing Interneurons Linearly Control Olfactory Bulb Output , 2013, Neuron.

[30]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[31]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[32]  Patrick O. Perry Cross -validation for unsupervised learning , 2009, 0909.3052.

[33]  I. Dean,et al.  Neural population coding of sound level adapts to stimulus statistics , 2005, Nature Neuroscience.

[34]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[35]  J. Kleim,et al.  Functional reorganization of the rat motor cortex following motor skill learning. , 1998, Journal of neurophysiology.

[36]  Scott W. Linderman,et al.  Bayesian Learning and Inference in Recurrent Switching Linear Dynamical Systems , 2017, AISTATS.

[37]  Eero P. Simoncelli,et al.  Attention stabilizes the shared gain of V4 populations , 2015, eLife.

[38]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[39]  H S Seung,et al.  How the brain keeps the eyes still. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  John P. Cunningham,et al.  Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity , 2008, NIPS.

[41]  K. Shenoy,et al.  Neural Population Dynamics Underlying Motor Learning Transfer , 2018, Neuron.

[42]  G. Golub,et al.  A tensor higher-order singular value decomposition for integrative analysis of DNA microarray data from different studies , 2007, Proceedings of the National Academy of Sciences.

[43]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[44]  Pierre Comon,et al.  Uniqueness of Nonnegative Tensor Approximations , 2014, IEEE Transactions on Information Theory.

[45]  J. Carmena,et al.  Emergence of a Stable Cortical Map for Neuroprosthetic Control , 2009, PLoS biology.

[46]  John P. Cunningham,et al.  Single-trial dynamics of motor cortex and their applications to brain-machine interfaces , 2015, Nature Communications.

[47]  J. Maunsell,et al.  When Attention Wanders: How Uncontrolled Fluctuations in Attention Affect Performance , 2011, The Journal of Neuroscience.

[48]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[49]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[50]  Ronald R. Coifman,et al.  Hierarchical Coupled-Geometry Analysis for Neuronal Structure and Activity Pattern Discovery , 2015, IEEE Journal of Selected Topics in Signal Processing.

[51]  Yuan Zhao,et al.  Interpretable Nonlinear Dynamic Modeling of Neural Trajectories , 2016, NIPS.

[52]  S. Wold Cross-Validatory Estimation of the Number of Components in Factor and Principal Components Models , 1978 .

[53]  Simon X. Chen,et al.  Emergence of reproducible spatiotemporal activity during motor learning , 2014, Nature.

[54]  Maja Pantic,et al.  TensorLy: Tensor Learning in Python , 2016, J. Mach. Learn. Res..

[55]  Hongkui Zeng,et al.  Long-Term Optical Access to an Estimated One Million Neurons in the Live Mouse Cortex. , 2016, Cell reports.

[56]  Selmaan N. Chettih,et al.  Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex , 2017, Cell.

[57]  J. Maunsell,et al.  A Neuronal Population Measure of Attention Predicts Behavioral Performance on Individual Trials , 2010, The Journal of Neuroscience.

[58]  Patrick O. Perry,et al.  Bi-cross-validation of the SVD and the nonnegative matrix factorization , 2009, 0908.2062.

[59]  Emilio Salinas,et al.  Gain Modulation A Major Computational Principle of the Central Nervous System , 2000, Neuron.

[60]  Tamara G. Kolda,et al.  On Tensors, Sparsity, and Nonnegative Factorizations , 2011, SIAM J. Matrix Anal. Appl..

[61]  Maneesh Sahani,et al.  Spectral learning of linear dynamics from generalised-linear observations with application to neural population data , 2012, NIPS.

[62]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[63]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[64]  M. McCarthy,et al.  Tensor decomposition for multi-tissue gene expression experiments , 2016, Nature Genetics.

[65]  Bernd Sturmfels,et al.  Reconstructing spatiotemporal gene expression data from partial observations , 2009, Bioinform..

[66]  Sergey L. Gratiy,et al.  Fully integrated silicon probes for high-density recording of neural activity , 2017, Nature.

[67]  Byron M. Yu,et al.  Dimensionality reduction for large-scale neural recordings , 2014, Nature Neuroscience.

[68]  G. La Camera,et al.  Stimuli Reduce the Dimensionality of Cortical Activity , 2015, bioRxiv.

[69]  J. Movshon,et al.  The analysis of visual motion: a comparison of neuronal and psychophysical performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  John P. Cunningham,et al.  Linear dynamical neural population models through nonlinear embeddings , 2016, NIPS.

[71]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[72]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[73]  John P. Cunningham,et al.  Dynamical segmentation of single trials from population neural data , 2011, NIPS.

[74]  Chethan Pandarinath,et al.  Inferring single-trial neural population dynamics using sequential auto-encoders , 2017, Nature Methods.

[75]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[76]  Pablo E. Jercog,et al.  Neural ensemble dynamics underlying a long-term associative memory , 2017, Nature.

[77]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[78]  Tamara G. Kolda,et al.  Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor components analysis , 2017, bioRxiv.

[79]  Jan M. Rabaey,et al.  Physical principles for scalable neural recording , 2013, Front. Comput. Neurosci..

[80]  John P. Cunningham,et al.  Empirical models of spiking in neural populations , 2011, NIPS.

[81]  Surya Ganguli,et al.  On simplicity and complexity in the brave new world of large-scale neuroscience , 2015, Current Opinion in Neurobiology.

[82]  David Sussillo,et al.  Neural circuits as computational dynamical systems , 2014, Current Opinion in Neurobiology.

[83]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  John P. Cunningham,et al.  Tensor Analysis Reveals Distinct Population Structure that Parallels the Different Computational Roles of Areas M1 and V1 , 2016, PLoS Comput. Biol..

[85]  Matthew T. Kaufman,et al.  Neural population dynamics during reaching , 2012, Nature.

[86]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[87]  P. Paatero A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .

[88]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[89]  M. Siniscalchi,et al.  Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior , 2016, Nature Neuroscience.

[90]  Emery N. Brown,et al.  Estimating a State-space Model from Point Process Observations Emery N. Brown , 2022 .

[91]  Michael Z. Lin,et al.  Genetically encoded indicators of neuronal activity , 2016, Nature Neuroscience.