Skewness and Kurtosis for Maximum Likelihood Estimator in one-parameter Exponential Family Models

In this paper we derive approximate formulae for the skewness and kurtosis of the maximum likelihood estimator in the one-parameter exponential family. The key idea underlying these formulae is that they indicate when the normal approximation usually employed with maximum likelihood estimators can be misleading in small samples. We apply our main result to a number of special distributions of this family. We also use a graphical analysis to examine how the skewness and kurtosis vary with the true value of the parameter in some special cases.

[1]  N. L. Johnson,et al.  Linear Statistical Inference and Its Applications , 1966 .

[2]  A. W. Davis,et al.  Generalized Asymptotic Expansions of Cornish-Fisher Type , 1968 .

[3]  Ole E. Barndorff-Nielsen,et al.  Approximate Interval Probabilities , 1990 .

[4]  G. Cordeiro,et al.  Bias reduction in one-parameter exponential family models , 1998 .

[5]  V. Zwet Convex transformations of random variables , 1965 .

[6]  G. Cordeiro,et al.  Modified maximum likelihood estimation in one-parameter exponential family models , 1999 .

[7]  L. Shenton,et al.  Higher Moments of a Maximum‐Likelihood Estimate , 1963 .

[8]  W. D. Ray Maximum likelihood estimation in small samples , 1977 .

[9]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[10]  James P. Braselton,et al.  The Maple V handbook , 1994 .

[11]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[12]  D. Firth Bias reduction of maximum likelihood estimates , 1993 .

[13]  R. R. Hall,et al.  AN INTRODUCTION TO THE THEORY OF THE RIEMANN ZETA‐FUNCTION , 1989 .

[14]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[15]  Peter McCullagh,et al.  Some Statistical Properties of a Family of Continuous Univariate Distributions , 1989 .

[16]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[17]  G. Cordeiro,et al.  Second and Third Order Bias Reduction for One-Parameter Family Models , 1996 .

[18]  D. Fraser Tail probabilities from observed likelihoods , 1990 .

[19]  D. Lawley A GENERAL METHOD FOR APPROXIMATING TO THE DISTRIBUTION OF LIKELIHOOD RATIO CRITERIA , 1956 .

[20]  H. W. Peers,et al.  Asymptotic Expansions for Confidence Limits in the Presence of Nuisance Parameters, with Applications , 1985 .

[21]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[22]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .