A ±36-A Integrated Current-Sensing System With a 0.3% Gain Error and a 400- $\mu \text{A}$ Offset From −55 °C to +85 °C

This paper presents an integrated shunt-based current-sensing system (CSS) capable of handling ±36-A currents, the highest ever reported. It also achieves a 0.3% gain error and a 400-<inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> offset, which is significantly better than the state-of-the-art systems. The heart of the system is a robust 260-<inline-formula> <tex-math notation="LaTeX">$\mu \Omega $ </tex-math></inline-formula> shunt resistor made from the lead frame of a standard HVQFN plastic package. The resulting voltage drop is then digitized by a precision <inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma $ </tex-math></inline-formula> ADC and a bandgap reference (BGR). At the expense of current handling capability, a ±5-A version of the CSS uses a 10-<inline-formula> <tex-math notation="LaTeX">$\text{m}\Omega $ </tex-math></inline-formula> on-chip metal shunt to achieve just a 4-<inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> offset. Both designs are realized in a standard 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process and draw 13 <inline-formula> <tex-math notation="LaTeX">$\mu \text{A}$ </tex-math></inline-formula> from a 1.5-V supply. Compensation of the spread and nonlinear temperature dependency of the shunt resistor <inline-formula> <tex-math notation="LaTeX">$R_{\mathrm {shunt}}$ </tex-math></inline-formula> is accomplished by the use of a fixed polynomial master curve and a single room temperature calibration. This procedure also effectively compensates for the residual spread and nonlinearity of the ADC and the BGR.

[1]  B. Schaffer,et al.  A miniature digital current sensor with differential Hall probes using enhanced chopping techniques and mechanical stress compensation , 2012, 2012 IEEE Sensors.

[2]  Martijn F. Snoeij,et al.  Integrated Fluxgate Magnetometer for Use in Isolated Current Sensing , 2016, IEEE Journal of Solid-State Circuits.

[3]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[4]  Kofi A. A. Makinwa,et al.  A BJT-based temperature-to-digital converter with ±60mK (3σ) inaccuracy from −70°C to 125°C in 160nm CMOS , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[5]  Kofi A. A. Makinwa,et al.  A ± 36A integrated current-sensing system with 0.3% gain error and 400µA offset from −55°C to +85°C , 2016, 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits).

[6]  G.C.M. Meijer,et al.  Temperature sensors and voltage references implemented in CMOS technology , 2001, IEEE Sensors Journal.

[7]  Fabien Mieyeville,et al.  A 100Hz 5nT/Hz Low-Pass /spl Delta//spl Sigma/ Servo-Controlled Microfluxgate Magnetometer Using Pulsed Excitation , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[8]  J. Huijsing,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[9]  Kofi A. A. Makinwa,et al.  A continuous-time ripple reduction technique for spinning-current Hall sensors , 2013, 2013 Proceedings of the ESSCIRC (ESSCIRC).

[10]  S. H. Shalmany,et al.  A ${\pm }\text{5}$ A Integrated Current-Sensing System With ${\pm}\text{0.3} $ % Gain Error and 16 μA Offset From $-\text{55}^{\;\circ} \text{C}$ to $+ \text{85}^{\;\circ} \text{C}$ , 2016 .

[11]  Kofi A. A. Makinwa,et al.  A micropower battery current sensor with ±0.03% (3σ) inaccuracy from −40 to +85°C , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[12]  S. Ziegler,et al.  Current Sensing Techniques: A Review , 2009, IEEE Sensors Journal.

[13]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C , 2012, 2012 IEEE International Solid-State Circuits Conference.

[14]  Jordi Suñé,et al.  Reliability Wearout Mechanisms in Advanced CMOS Technologies , 2009 .

[15]  Johan H. Huijsing,et al.  Precision Temperature Sensors in CMOS Technology , 2006 .

[16]  Wilko J. Kindt,et al.  27.9 A 200kS/s 13.5b integrated-fluxgate differential-magnetic-to-digital converter with an oversampling compensation loop for contactless current sensing , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[17]  J. Black Mass Transport of Aluminum by Momentum Exchange with Conducting Electrons , 1967 .

[18]  Kofi A. A. Makinwa,et al.  A fully integrated ±5A current-sensing system with ±0.25% gain error and 12μΑ offset from −40°C to +85°C , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[19]  Mario Motz,et al.  5.8 A digitally assisted single-point-calibration CMOS bandgap voltage reference with a 3σ inaccuracy of ±0.08% for fuel-gauge applications , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[20]  J.D. van Wyk,et al.  An overview of integratable current sensor technologies , 2003, 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference, 2003..

[21]  Kofi A. A. Makinwa,et al.  12-bit accurate voltage-sensing ADC with curvature-corrected dynamic reference , 2010 .

[22]  Kofi A. A. Makinwa,et al.  A ±5A Integrated Current-Sensing System With ±0.3% Gain Error and 16μA Offset From -55°C +85°C , 2016, IEEE J. Solid State Circuits.

[23]  P.M. Drljaca,et al.  Low-power 2-D fully integrated CMOS fluxgate magnetometer , 2005, IEEE Sensors Journal.