A Density Matrix Algorithm for 3D Classical Models

We generalize the corner transfer matrix renormalization group, which consists of White's density matrix algorithm and Baxter's method of the corner transfer matrix, to three dimensional (3D) classical models. The renormalization group transformation is obtained through the diagonalization of density matrices for a cubic cluster. A trial application to 3D Ising model with m = 2 is shown as the simplest case.

[1]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[2]  Bruno Nachtergaele,et al.  Exact Antiferromagnetic Ground States of Quantum Spin Chains , 1989 .

[3]  H. Bethe Statistical Theory of Superlattices , 1935 .

[4]  White,et al.  Numerical renormalization-group study of low-lying eigenstates of the antiferromagnetic S=1 Heisenberg chain. , 1993, Physical review. B, Condensed matter.

[5]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[6]  R. Baxter Variational approximations for square lattice models in statistical mechanics , 1978 .

[7]  R. Kikuchi A Theory of Cooperative Phenomena , 1951 .

[8]  Andreas Schadschneider,et al.  Groundstate properties of a generalized VBS-model , 1992 .

[9]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[10]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[11]  Density Matrix Renormalization Group Method for 2D Classical Models , 1995, cond-mat/9508111.

[12]  K. Hida Density Matrix Renormalization Group Method for Random Quantum One-Dimensional Systems -Application to the Random Spin-1/2 Antiferromagnetic Heisenberg Chain- , 1996, cond-mat/9602025.

[13]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[14]  Nightingale,et al.  Gap of the linear spin-1 Heisenberg antiferromagnet: A Monte Carlo calculation. , 1986, Physical review. B, Condensed matter.

[15]  J. Zittartz,et al.  Quantum phase transition in spin-3/2 systems on the hexagonal lattice — optimum ground state approach , 1997 .

[16]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[17]  Tomotoshi Nishino,et al.  Corner Transfer Matrix Algorithm for Classical Renormalization Group , 1997 .

[18]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[19]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[20]  Tomotoshi Nishino,et al.  Numerical latent heat observation of the q = 5 Potts model , 1997 .

[21]  S. Rommer,et al.  CLASS OF ANSATZ WAVE FUNCTIONS FOR ONE-DIMENSIONAL SPIN SYSTEMS AND THEIR RELATION TO THE DENSITY MATRIX RENORMALIZATION GROUP , 1997 .

[22]  M. Martin-Delgado,et al.  Strongly Correlated Magnetic and Superconducting Systems , 1997 .

[23]  M. Fannes,et al.  Quantum spin chains with quantum group symmetry , 1996 .