On some efficient interior point methods for nonlinear convex programming

[1]  Shinji Mizuno,et al.  An $$O(\sqrt n L)$$ iteration potential reduction algorithm for linear complementarity problems , 1991, Math. Program..

[2]  Yinyu Ye,et al.  An O(n3L) potential reduction algorithm for linear programming , 1991, Math. Program..

[3]  Donald Goldfarb,et al.  An O(n3L) primal interior point algorithm for convex quadratic programming , 1991, Math. Program..

[4]  Michael J. Todd,et al.  A Centered Projective Algorithm for Linear Programming , 1990, Math. Oper. Res..

[5]  Renato D. C. Monteiro,et al.  An Extension of Karmarkar Type Algorithm to a Class of Convex Separable Programming Problems with Global Linear Rate of Convergence , 1990, Math. Oper. Res..

[6]  Michael J. Todd,et al.  Containing and shrinking ellipsoids in the path-following algorithm , 1990, Math. Program..

[7]  J. Stoer,et al.  Global ellipsoidal approximations and homotopy methods for solving convex analytic programs , 1990 .

[8]  Shinji Mizuno,et al.  A polynomial-time algorithm for a class of linear complementarity problems , 1989, Math. Program..

[9]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[10]  Garth P. McCormick,et al.  The Projective SUMT Method for Convex Programming , 1989, Math. Oper. Res..

[11]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[12]  G. Sonnevend An "analytical centre" for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming , 1986 .

[13]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[14]  E. Gol′šteĭn,et al.  Theory of Convex Programming , 1972 .

[15]  J. Stoer,et al.  Convexity and Optimization in Finite Dimensions I , 1970 .