Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes

[1]  Shengli Chen,et al.  Boosting Hydrogen Oxidation Activity of Ni in Alkaline Media through Oxygen Vacancy-Rich CeO2/Ni Heterostructures. , 2019, Angewandte Chemie.

[2]  M. Zhang,et al.  Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a Ni-based MOF. , 2019, Angewandte Chemie.

[3]  Hao Ming Chen,et al.  Ni3 N as an Active Hydrogen Oxidation Reaction Catalyst in Alkaline Medium. , 2019, Angewandte Chemie.

[4]  Pengcheng Zhao,et al.  Hydrogen Evolution and Oxidation: Mechanistic Studies and Material Advances , 2019, Advanced materials.

[5]  K. Okubo,et al.  Surface modification of Pt nanoparticles with other metals boosting the alkaline hydrogen oxidation reaction. , 2019, Chemical communications.

[6]  B. Yi,et al.  Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction , 2019, Journal of Materials Chemistry A.

[7]  Yu Huang,et al.  Unifying the Hydrogen Evolution and Oxidation Reactions Kinetics in Base by Identifying the Catalytic Roles of Hydroxyl-Water-Cation Adducts. , 2019, Journal of the American Chemical Society.

[8]  Wenzheng Li,et al.  BCC-Phased PdCu Alloy as a Highly Active Electrocatalyst for Hydrogen Oxidation in Alkaline Electrolytes. , 2018, Journal of the American Chemical Society.

[9]  Yadong Li,et al.  Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms , 2018, Nature Catalysis.

[10]  L. Gu,et al.  Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis , 2018, Nature Chemistry.

[11]  S. Barman,et al.  Platinum Nanostructure/Nitrogen-Doped Carbon Hybrid: Enhancing its Base Media HER/HOR Activity through Bi-functionality of the Catalyst. , 2018, ChemSusChem.

[12]  Laetitia Dubau,et al.  Surface Distortion as a Unifying Concept and Descriptor in Oxygen Reduction Reaction Electrocatalysis , 2018, Nature Materials.

[13]  Junfa Zhu,et al.  Tailoring the d-Band Centers Enables Co4 N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis. , 2018, Angewandte Chemie.

[14]  Sanjeev Mukerjee,et al.  Experimental Proof of the Bifunctional Mechanism for the Hydrogen Oxidation in Alkaline Media. , 2017, Angewandte Chemie.

[15]  Wan Ramli Wan Daud,et al.  PEM fuel cell system control: A review , 2017 .

[16]  K. Artyushkova,et al.  Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells , 2017 .

[17]  I. Parkin,et al.  Phase and morphological control of MoO3-x nanostructures for efficient cancer theragnosis therapy. , 2017, Nanoscale.

[18]  Yadong Li,et al.  Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation , 2017, Science Advances.

[19]  Xiaodong Zhuang,et al.  Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics , 2017, Nature Communications.

[20]  Siqi Lu,et al.  Investigating the Influences of the Adsorbed Species on Catalytic Activity for Hydrogen Oxidation Reaction in Alkaline Electrolyte. , 2017, Journal of the American Chemical Society.

[21]  Brian P. Setzler,et al.  Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells. , 2016, Nature nanotechnology.

[22]  Yang Ren,et al.  Versatile nickel–tungsten bimetallics/carbon nanofiber catalysts for direct conversion of cellulose to ethylene glycol , 2016 .

[23]  Jun Jiang,et al.  Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation. , 2016, Journal of the American Chemical Society.

[24]  Yushan Yan,et al.  Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy , 2016, Science Advances.

[25]  Jingguang G. Chen,et al.  Low loadings of platinum on transition metal carbides for hydrogen oxidation and evolution reactions in alkaline electrolytes. , 2016, Chemical communications.

[26]  Dionisios G. Vlachos,et al.  Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte , 2016, Nature Communications.

[27]  Samuel St. John,et al.  Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation , 2015 .

[28]  Danielle L. Gray,et al.  Nickel‐Molybdenum and Nickel‐Tungsten Dithiolates: Hybrid Models for Hydrogenases and Hydrodesulfurization , 2015 .

[29]  Samuel St. John,et al.  Ruthenium-Alloy Electrocatalysts with Tunable Hydrogen Oxidation Kinetics in Alkaline Electrolyte , 2015 .

[30]  Jingguang G. Chen,et al.  Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy , 2015, Nature Communications.

[31]  H. Gasteiger,et al.  New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism , 2014 .

[32]  Jingguang G. Chen,et al.  Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes , 2014 .

[33]  Bryan S. Pivovar,et al.  Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. , 2013, Journal of the American Chemical Society.

[34]  Yuta Yamamoto,et al.  Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. , 2013, Journal of the American Chemical Society.

[35]  Jingguang G. Chen,et al.  Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces , 2013 .

[36]  Nemanja Danilovic,et al.  Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. , 2013, Nature chemistry.

[37]  R. Morris Bullock,et al.  A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s−1 for H2 Production , 2011, Science.

[38]  H. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes , 2010 .

[39]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[40]  Lin Zhuang,et al.  Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts , 2008, Proceedings of the National Academy of Sciences.

[41]  H. Morgner,et al.  Evaporation of Ni and carbon containing species onto NiO/Ni as case study for metal support catalysts investigated by Metastable Induced Electron Spectroscopy (MIES) , 2005 .

[42]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[43]  A. Roßberg,et al.  Wavelet analysis of extended x-ray absorption fine structure data , 2005 .

[44]  N. Marković,et al.  Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction , 2002 .

[45]  G. Scuseria,et al.  Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional , 1999 .

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  C. Gutiérrez,et al.  Study by potential-modulated reflectance spectroscopy of the electroadsorption of CO on Ni in alkaline medium , 1995 .

[48]  Akira Murata,et al.  Electrochemical evidence of intermediate formation of adsorbed CO in cathodic reduction of CO2 at a nickel electrode , 1990 .

[49]  M. Heinonen,et al.  Influence of sputtering on the valence band of Mo, Ni and MoNi3 alloy , 1988 .

[50]  E. Justi,et al.  The DSK System of Fuel Cell Electrodes , 1961 .

[51]  F. T. Bacon The High Pressure Hydrogen-Oxygen Fuel Cell , 1960 .

[52]  Yushan Yan,et al.  Perspective—Towards Establishing Apparent Hydrogen Binding Energy as the Descriptor for Hydrogen Oxidation/Evolution Reactions , 2018 .

[53]  Jing Pan,et al.  Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? , 2015 .

[54]  D. Brett,et al.  Hydrogen Oxidation on PdIr/C Catalysts in Alkaline Media , 2014 .

[55]  Robert C. Wolpert,et al.  A Review of the , 1985 .