Rauzy substitutions and multi-dimensional Sturmian words

Recently, Berthe and the author developed a method to construct a multi-dimensional Sturmian word as a limit of a sequence of words on lattice domains. In the present paper, the reach of the approach is studied in the special case of Rauzy substitutions.

[1]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[2]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[3]  A. Messaoudi Propriétés arithmétiques et dynamiques du fractal de Rauzy , 1998 .

[4]  Yang Wang,et al.  Self-affine tiling via substitution dynamical systems and Rauzy fractals , 2002 .

[5]  A. Messaoudi,et al.  Frontiere du fractal de Rauzy et systeme de numeration complexe , 2000 .

[6]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[7]  Laurent Vuillon,et al.  Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences , 2000, Discret. Math..

[8]  Pierre Arnoux,et al.  Higher dimensional extensions of substitutions and their dual maps , 2001 .

[9]  Valérie Berthé,et al.  Lattices and multi-dimensional words , 2004, Theor. Comput. Sci..

[10]  Víctor F. Sirvent,et al.  On Some Dynamical Subsets of the Rauzy Fractal , 1997, Theor. Comput. Sci..

[11]  Valérie Berthé,et al.  Suites doubles de basse complexité , 2000 .

[12]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[13]  R. J. Simpson,et al.  Multi-dimensional versions of a theorem of fine and wilf and a formula of Sylvester , 2003 .

[14]  Giuseppe Pirillo,et al.  Episturmian words and some constructions of de Luca and Rauzy , 2001, Theor. Comput. Sci..

[15]  Gwénaël Richomme Conjugacy and episturmian morphisms , 2003, Theor. Comput. Sci..

[16]  G. Rauzy Nombres algébriques et substitutions , 1982 .