Algorithmic and modeling insights via volumetric comparison of polyhedral relaxations

This is mostly a survey on some mathematical results concerning volumes of polytopes of interest in non-convex optimization. Our motivation is in geometrically comparing relaxations in the context of mixed-integer linear and nonlinear optimization, with the goal of gaining algorithmic and modeling insights. We consider relaxations of: fixed-charge formulations, vertex packing polytopes, boolean-quadric polytopes, and relaxations of graphs of monomials on box domains. Besides surveying the area, we do give a few new results, and we provide many directions for further work.

[1]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[2]  Jon Lee,et al.  On branching-point selection for trilinear monomials in spatial branch-and-bound: the hull relaxation , 2018, J. Glob. Optim..

[3]  Jon Lee,et al.  Experimental validation of volume-based comparison for double-McCormick relaxations , 2016 .

[4]  E. Steingrímsson,et al.  A decomposition of 2-weak vertex-packing polytopes , 1994 .

[5]  Jon Lee All-Different Polytopes , 2002, J. Comb. Optim..

[6]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[7]  Jesús A. De Loera,et al.  Integer Polynomial Optimization in Fixed Dimension , 2006, Math. Oper. Res..

[8]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[9]  Robert G. Jeroslow,et al.  There Cannot be any Algorithm for Integer Programming with Quadratic Constraints , 1973, Oper. Res..

[10]  Caterina De Simone,et al.  The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..

[11]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[12]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[13]  Raymond Hemmecke,et al.  Nonlinear Integer Programming , 2009, 50 Years of Integer Programming.

[14]  J. Lawrence Polytope volume computation , 1991 .

[15]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[16]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[17]  Emily Speakman,et al.  Volumetric Guidance for Handling Triple Products in Spatial Branch-and-Bound , 2017 .

[18]  Jon Lee,et al.  Parametric nonlinear discrete optimization over well-described sets and matroid intersections , 2010, Math. Program..

[19]  Jon Lee,et al.  The volume of relaxed Boolean-quadric and cut polytopes , 1997, Discret. Math..

[20]  Jon Lee,et al.  Geometric Comparison of Combinatorial Polytopes , 1994, Discret. Appl. Math..

[21]  B. Grünbaum,et al.  An enumeration of simplicial 4-polytopes with 8 vertices , 1967 .

[22]  Sven de Vries,et al.  Separating Type-I Odd-Cycle Inequalities for a Binary-Encoded Edge-Coloring Formulation , 2005, J. Comb. Optim..

[23]  Shmuel Onn Convex Discrete Optimization , 2009, Encyclopedia of Optimization.

[24]  Itamar Pitowsky,et al.  Correlation polytopes: Their geometry and complexity , 1991, Math. Program..

[25]  Jon Lee,et al.  Mixed-integer nonlinear programming: Some modeling and solution issues , 2007, IBM J. Res. Dev..

[26]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[27]  Jon Lee,et al.  Quantifying Double McCormick , 2017, Math. Oper. Res..

[28]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..