Decadal variability in land carbon sink efficiency

[1]  Tchetin Kazak European Green Deal , 2022, Yearbook of the Law Department.

[2]  A. Lindroth,et al.  Accounting for all territorial emissions and sinks is important for development of climate mitigation policies , 2021, Carbon Balance and Management.

[3]  Zoran J. N. Steinmann,et al.  The climate change mitigation potential of bioenergy with carbon capture and storage , 2020, Nature Climate Change.

[4]  R. B. Jackson,et al.  Climate-driven risks to the climate mitigation potential of forests , 2020, Science.

[5]  C. Frankenberg,et al.  Fire decline in dry tropical ecosystems enhances decadal land carbon sink , 2020, Nature Communications.

[6]  Tomoko Hasegawa,et al.  Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6 , 2020 .

[7]  David Kenfack,et al.  Asynchronous carbon sink saturation in African and Amazonian tropical forests , 2020, Nature.

[8]  P. Ciais,et al.  Historical CO2 emissions from land-use and land-cover change and their uncertainty , 2020 .

[9]  Atul K. Jain,et al.  Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates , 2020, Global Biogeochemical Cycles.

[10]  André C. P. L. F. de Carvalho,et al.  TerraBrasilis: A Spatial Data Analytics Infrastructure for Large-Scale Thematic Mapping , 2019, ISPRS Int. J. Geo Inf..

[11]  Charlotte K. Williams,et al.  The technological and economic prospects for CO2 utilization and removal , 2019, Nature.

[12]  Arnaud Mialon,et al.  Satellite-observed pantropical carbon dynamics , 2019, Nature Plants.

[13]  S. Zaehle,et al.  The fate of carbon in a mature forest under carbon dioxide enrichment , 2019, bioRxiv.

[14]  Philippe Ciais,et al.  Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient , 2019, Nature.

[15]  Benjamin Smith,et al.  Role of forest regrowth in global carbon sink dynamics , 2019, Proceedings of the National Academy of Sciences.

[16]  J. Marotzke,et al.  ENSO Change in Climate Projections: Forced Response or Internal Variability? , 2018, Geophysical Research Letters.

[17]  S. Zaehle,et al.  Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO2 Uptake , 2018 .

[18]  S. Zaehle,et al.  How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO 2 data , 2018 .

[19]  V. Arora,et al.  Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land , 2018, Nature Communications.

[20]  P. Forster,et al.  Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Publisher's Note , 2018, Anaesthesia.

[22]  Dell,et al.  Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño , 2017, Science.

[23]  Richard A. Houghton,et al.  Global and regional fluxes of carbon from land use and land cover change 1850–2015 , 2017 .

[24]  Michel G.J. den Elzen,et al.  The key role of forests in meeting climate targets requires science for credible mitigation , 2017 .

[25]  J. Canadell,et al.  Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets , 2016, Proceedings of the National Academy of Sciences.

[26]  P. Cox,et al.  Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 , 2016, Nature.

[27]  Susan G. Letcher,et al.  Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics , 2016, Science Advances.

[28]  Susan G. Letcher,et al.  Biomass resilience of Neotropical secondary forests , 2016, Nature.

[29]  P. Ciais,et al.  Top–down assessment of the Asian carbon budget since the mid 1990s , 2015, Nature Communications.

[30]  E. Hansis,et al.  Relevance of methodological choices for accounting of land use change carbon fluxes , 2015 .

[31]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[32]  R. Houghton,et al.  Terminology as a key uncertainty in net land use and land cover change carbon flux estimates , 2014 .

[33]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[34]  A. Timmermann,et al.  Increasing frequency of extreme El Niño events due to greenhouse warming , 2014 .

[35]  Ranga B. Myneni,et al.  A two-fold increase of carbon cycle sensitivity to tropical temperature variations , 2014, Nature.

[36]  Corinne Le Quéré,et al.  The declining uptake rate of atmospheric CO2 by land and ocean sinks , 2013 .

[37]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[38]  Y. Niwa,et al.  Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. , 2013 .

[39]  J. Canadell,et al.  Variations in atmospheric CO2 growth rates coupled with tropical temperature , 2013, Proceedings of the National Academy of Sciences.

[40]  P. Ciais,et al.  A theoretical framework for the net land-to-atmosphere CO 2 flux and its implications in the definition of "emissions from land-use change" , 2013 .

[41]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[42]  P. Ciais,et al.  Archived Version from Ncdocks Institutional Repository a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion Title: a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion , 2022 .

[43]  K. Wolter,et al.  El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext) , 2011 .

[44]  Fabienne Maignan,et al.  CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements , 2010 .

[45]  A. Rogers,et al.  Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. , 2009, Journal of experimental botany.

[46]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[47]  P. Ciais,et al.  Net carbon dioxide losses of northern ecosystems in response to autumn warming , 2008, Nature.

[48]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[49]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[50]  Philippe Ciais,et al.  Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades , 2007 .

[51]  R. Ceulemans,et al.  Forest response to elevated CO2 is conserved across a broad range of productivity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[53]  I. C. Prentice,et al.  Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect , 2002, Science.

[54]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[55]  Organización de las Naciones Unidas United Nations framework convention on climate change , 1992 .

[56]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .