Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage

[1]  C. Nan,et al.  Scalable Ultrathin All‐Organic Polymer Dielectric Films for High‐Temperature Capacitive Energy Storage , 2022, Advances in Materials.

[2]  G. Sotzing,et al.  Rational design of all-organic flexible high-temperature polymer dielectrics , 2022, Matter.

[3]  Jie Zhou,et al.  Improving the Rotational Freedom of Polyetherimide: Enhancement of the Dielectric Properties of a Commodity High-Temperature Polymer Using a Structural Defect , 2022, Chemistry of Materials.

[4]  Hong Wang,et al.  Enhancing high-temperature capacitor performance of polymer nanocomposites by adjusting the energy level structure in the micro-/meso-scopic interface region , 2022, Nano Energy.

[5]  Hong Wang,et al.  Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface , 2022, Nano Energy.

[6]  Jie Zhou,et al.  Polyamideimide dielectric with montmorillonite nanosheets coating for high-temperature energy storage , 2022, Chemical Engineering Journal.

[7]  Mohamadreza Arab Baferani,et al.  Flexible polyolefin dielectric by strategic design of organic modules for harsh condition electrification , 2022, Energy & Environmental Science.

[8]  G. Sotzing,et al.  Flexible cyclic-olefin with enhanced dipolar relaxation for harsh condition electrification , 2021, Proceedings of the National Academy of Sciences.

[9]  Yao Zhou,et al.  Polymer dielectrics sandwiched by medium-dielectric-constant nanoscale deposition layers for high-temperature capacitive energy storage , 2021 .

[10]  G. Sotzing,et al.  Dielectric Polymers Tolerant to Electric Field and Temperature Extremes: Integration of Phenomenology, Informatics, and Experimental Validation. , 2021, ACS applied materials & interfaces.

[11]  H. Deng,et al.  Improving high-temperature energy storage performance of PI dielectric capacitor films through boron nitride interlayer , 2021, Advanced Composites and Hybrid Materials.

[12]  Lijun Yang,et al.  High‐Temperature High‐Energy‐Density Dielectric Polymer Nanocomposites Utilizing Inorganic Core–Shell Nanostructured Nanofillers , 2021, Advanced Energy Materials.

[13]  Xinwei Xu,et al.  A Facile In Situ Surface‐Functionalization Approach to Scalable Laminated High‐Temperature Polymer Dielectrics with Ultrahigh Capacitive Performance , 2021, Advanced Functional Materials.

[14]  J. Zhai,et al.  Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage , 2021 .

[15]  Yang Shen,et al.  High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles , 2020 .

[16]  Haibo Zhang,et al.  Ultrahigh energy density and thermal stability in sandwich-structured nanocomposites with dopamine@Ag@BaTiO3 , 2020 .

[17]  Yao Zhou,et al.  Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage , 2020, Nature Communications.

[18]  Rampi Ramprasad,et al.  Flexible Temperature‐Invariant Polymer Dielectrics with Large Bandgap , 2020, Advanced materials.

[19]  Yao Zhou,et al.  Tuning Nanofillers in In Situ Prepared Polyimide Nanocomposites for High‐Temperature Capacitive Energy Storage , 2020, Advanced Energy Materials.

[20]  Sharon X. Huang,et al.  Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics , 2019, Nature Communications.

[21]  Long-qing Chen,et al.  Scalable Polymer Nanocomposites with Record High‐Temperature Capacitive Performance Enabled by Rationally Designed Nanostructured Inorganic Fillers , 2019, Advanced materials.

[22]  S. Greenbaum,et al.  Polymer Capacitor Dielectrics for High Temperature Applications. , 2018, ACS applied materials & interfaces.

[23]  Hong Wang,et al.  High-Temperature Dielectric Materials for Electrical Energy Storage , 2018, Annual Review of Materials Research.

[24]  Long-Qing Chen,et al.  High‐Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High‐Temperature Dielectric Materials , 2017, Advanced materials.

[25]  Guangzu Zhang,et al.  Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures , 2016, Proceedings of the National Academy of Sciences.

[26]  Chiho Kim,et al.  A polymer dataset for accelerated property prediction and design , 2016, Scientific Data.

[27]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[28]  Qiming Zhang,et al.  Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors , 2015 .

[29]  Lili Zhang,et al.  High-Temperature Capacitor Polymer Films , 2014, Journal of Electronic Materials.

[30]  F. Chiu A Review on Conduction Mechanisms in Dielectric Films , 2014 .

[31]  Yi Wang,et al.  Theory of modified thermally stimulated current and direct determination of trap level distribution , 2011 .

[32]  Bruno Allard,et al.  State of the art of high temperature power electronics , 2009 .

[33]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[34]  Jürgen Hafner,et al.  Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..

[35]  W. J. Sarjeant,et al.  Capacitive components for power electronics , 2001, Proc. IEEE.

[36]  H. Riel,et al.  Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation , 1999 .

[37]  H. Rendell Thermoluminescence of solids , 1990 .

[38]  H. Fröhlich Electronic Processes in Ionic Crystals , 1949, Nature.