Ultrawideband All-Metal Flared-Notch Array Radiator

Simulations and measurements are presented for an all-metal flared-notch array element in both single and dual-polarization configurations. The ultrawideband radiator exhibits an operational bandwidth of 12:1 for broadside scan and 8:1 bandwidth at a 45-degree scan in all planes, maintaining active VSWR<;2. The feed consists of a direct coax-to-slot-line transition that mounts directly into the base of the radiator. The all-metal flared-notches are machined from common metal stock and fed via SMA coaxial connectors. No soldering is required for any part of the design-including the feed-and assembly is simple and modular. The array parts are machined using a high-precision wire-EDM cutting technology, ensuring that measurements (in the 700 MHz-9 GHz range) are repeatable and give close agreement with theory, even through multiple assembly cycles of the modular construction system. This paper presents results for a 32-element linear array of horizontal elements and also an 8 × 8 planar array of dual-polarized elements, comparing measurements with full-wave simulations of the complete finite array structures.

[1]  Tan-Huat Chio,et al.  Experimental results of 144-element dual-polarized endfire tapered-slot phased arrays , 2000 .

[2]  Mark Jones,et al.  A New Approach to Broadband Array Design using Tightly Coupled Elements , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[3]  M. Kragalott,et al.  Design of a 5:1 bandwidth stripline notch array from FDTD analysis , 2000 .

[4]  Peter Hall,et al.  Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays , 1996 .

[5]  Keith D. Trott,et al.  Wideband phased array radiator , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[6]  E. Lucas,et al.  A 3-D hybrid finite element/boundary element method for the unified radiation and scattering analysis of general infinite periodic arrays , 1995 .

[7]  D. Schaubert,et al.  A parameter study of stripline-fed Vivaldi notch-antenna arrays , 1999 .

[8]  H. Holter,et al.  Dual-Polarized Broadband Array Antenna With BOR-Elements, Mechanical Design and Measurements , 2007, IEEE Transactions on Antennas and Propagation.

[9]  P. J. Gibson The Vivaldi Aerial , 1979, 1979 9th European Microwave Conference.

[10]  J.B.L. Rao,et al.  Coincident phase center ultra wideband array of dual polarized flared notch elements , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[11]  Rick Kindt,et al.  12-to-1 bandwidth all-metal Vivaldi array element , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[12]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[13]  Rick Kindt,et al.  A wavelength-scaled ultra-wide bandwidth array , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[14]  J. J. Lee,et al.  Wide band bunny-ear radiating element , 1993, Proceedings of IEEE Antennas and Propagation Society International Symposium.

[15]  D. Schaubert,et al.  Effect of dielectric permittivity on infinite arrays of single-polarized Vivaldi antennas , 2006, IEEE Transactions on Antennas and Propagation.

[16]  J. Hunt,et al.  A broadband stripline array element , 1974 .

[17]  M. Kragalott,et al.  Preliminary Investigations of a Low-Cost Ultrawideband Array Concept , 2009, IEEE Transactions on Antennas and Propagation.

[18]  Marinos N. Vouvakis,et al.  A Non-Conformal Domain Decomposition Method for Solving Large Electromagnetic Wave Problems , 2005 .

[19]  R W Kindt,et al.  Analysis of a Wavelength-Scaled Array (WSA) Architecture , 2010, IEEE Transactions on Antennas and Propagation.

[20]  James J. Rawnick,et al.  A low-profile broadband phased array antenna , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[21]  N. Marchand,et al.  Transmission-line Conversion Transformers , 1944 .

[22]  John L. Volakis,et al.  Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation , 1999 .

[23]  S. Livingston,et al.  A low-profile wide-band (5:1) dual-pol array , 2003, IEEE Antennas and Wireless Propagation Letters.

[24]  M. N. Vouvakis,et al.  Analysis of wavelength-scaled array architectures via domain decomposition techniques for finite arrays , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.

[25]  H. Steyskal,et al.  Broad-band fragmented aperture phased array element design using genetic algorithms , 2005, IEEE Transactions on Antennas and Propagation.

[26]  D. H. Schaubert,et al.  Full and partial crosswalls between unit cells of endfire slotline arrays , 2000 .