On one approach to a posteriori error estimates for evolution problems solved by the method of lines
暂无分享,去创建一个
[1] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[2] Ivo Babuška,et al. A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations , 2001 .
[3] Giuseppe Savare',et al. A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations † , 2000 .
[4] Karel Segeth,et al. A posteriori error estimation with the finite element method of lines for a nonlinear parabolic equation in one space dimension , 1999, Numerische Mathematik.
[5] Rüdiger Verfürth,et al. A posteriori error estimates for nonlinear problems. Lr(0, T; Lrho(Omega))-error estimates for finite element discretizations of parabolic equations , 1998, Math. Comput..
[6] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[7] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[8] I. Babuska,et al. A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .
[9] Peter K. Moore,et al. A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension , 1994 .
[10] Joseph E. Flaherty,et al. A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems , 1993 .
[11] Ivo Babuška,et al. Analysis of the efficiency of an a posteriori error estimator for linear triangular finite elements , 1992 .
[12] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[13] J. Verwer,et al. A numerical study of three moving-grid methods for one-dimensional partial differential equations which are based on the method of lines , 1990 .
[14] J. T. Oden,et al. A posteriori error estimation of finite element approximations in fluid mechanics , 1990 .
[15] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[16] O. C. Zienkiewicz,et al. Adaptive techniques in the finite element method , 1988 .
[17] Joseph E. Flaherty,et al. A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .
[18] Ivo Babuška,et al. Basic principles of feedback and adaptive approaches in the finite element method , 1986 .
[19] Ivo Babuška,et al. An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type , 1986 .
[20] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[21] L. Petzold. A description of dassl: a differential/algebraic system solver , 1982 .
[22] A. Hindmarsh. LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.
[23] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[24] C. Carstensen,et al. Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods , 2000 .
[25] M. Stynes,et al. Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .
[26] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[27] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[28] K. Segeth. A posteriori error estimates for parabolic differential systems solved by the finite element method of lines , 1994 .
[29] K. Segeth. Grid adjustment based on a posteriori error estimators , 1993 .
[30] Karel Rektorys,et al. The method of discretization in time and partial differential equations , 1982 .
[31] I. Babuska,et al. A‐posteriori error estimates for the finite element method , 1978 .
[32] H. Baumgärtel,et al. Gajewski, H./Gröger, K./Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, VI, 281 S. Berlin. Akademie-Verlag. 1974. Preis 65,- M . , 1977 .
[33] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[34] H. Gajewski,et al. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .