Noise reduction in diffusion MRI using non‐local self‐similar information in joint Symbol space

HighlightsXQ‐NLM allows information from curved structures to be used for denoising.XQ‐NLM performs patch matching in the joint Symbol space. Symbol. No Caption available.XQ‐NLM outperforms state‐of‐the‐art methods, including ANLM, NLSAM, and MPPCA. Graphical abstract Figure. No Caption available. ABSTRACT Diffusion MRI affords valuable insights into white matter microstructures, but suffers from low signal‐to‐noise ratio (SNR), especially at high diffusion weighting (i.e., b‐value). To avoid time‐intensive repeated acquisition, post‐processing algorithms are often used to reduce noise. Among existing methods, non‐local means (NLM) has been shown to be particularly effective. However, most NLM algorithms for diffusion MRI focus on patch matching in the spatial domain (i.e., x‐space) and disregard the fact that the data live in a combined 6D space covering both spatial domain and diffusion wavevector domain (i.e., q‐space). This drawback leads to inaccurate patch matching in curved white matter structures and hence the inability to effectively use recurrent information for noise reduction. The goal of this paper is to overcome this limitation by extending NLM to the joint Symbol space. Specifically, we define for each point in the Symbol space a spherical patch from which we extract rotation‐invariant features for patch matching. The ability to perform patch matching across q‐samples allows patches from differentially orientated structures to be used for effective noise removal. Extensive experiments on synthetic, repeated‐acquisition, and HCP data demonstrate that our method outperforms state‐of‐the‐art methods, both qualitatively and quantitatively. Symbol. No Caption available. Symbol. No Caption available.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  Dinggang Shen,et al.  Graph-Constrained Sparse Construction of Longitudinal Diffusion-Weighted Infant Atlases , 2017, MICCAI.

[3]  Dinggang Shen,et al.  Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space , 2018, Front. Neuroinform..

[4]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[5]  Dinggang Shen,et al.  Multi-Tissue Decomposition of Diffusion MRI Signals via $\ell _{0}$ Sparse-Group Estimation , 2016, IEEE Transactions on Image Processing.

[6]  Dinggang Shen,et al.  XQ-NLM: Denoising Diffusion MRI Data via x-q Space Non-local Patch Matching , 2016, MICCAI.

[7]  Justin P. Haldar,et al.  A Majorize-Minimize Framework for Rician and Non-Central Chi MR Images , 2015, IEEE Transactions on Medical Imaging.

[8]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[9]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[10]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[11]  Cheng Guan Koay,et al.  A signal transformational framework for breaking the noise floor and its applications in MRI. , 2009, Journal of magnetic resonance.

[12]  Dinggang Shen,et al.  Block-Based Statistics for Robust Non-parametric Morphometry , 2015, Patch-MI@MICCAI.

[13]  Santiago Aja-Fernández,et al.  Statistical Analysis of Noise in MRI , 2016, Springer International Publishing.

[14]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[15]  Alfred Anwander,et al.  Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS) , 2012, Medical Image Anal..

[16]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[17]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[18]  Yong Zhang,et al.  Multi-Tissue Decomposition of Diffusion MRI Signals via Sparse-Group Estimation. , 2016 .

[19]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[20]  G. Pearlson,et al.  Diffusion Tensor Imaging and Axonal Tracking in the Human Brainstem , 2001, NeuroImage.

[21]  Dinggang Shen,et al.  Denoising magnetic resonance images using collaborative non-local means , 2016, Neurocomputing.

[22]  D. Louis Collins,et al.  Diffusion Weighted Image Denoising Using Overcomplete Local PCA , 2013, PloS one.

[23]  Yann Strozecki,et al.  Patch reprojections for Non-Local methods , 2012, Signal Process..

[24]  Dinggang Shen,et al.  Multi-channel framelet denoising of diffusion-weighted images , 2019, PloS one.

[25]  Ke Li,et al.  Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing , 2016, Scientific Reports.

[26]  E. McVeigh,et al.  Signal-to-noise measurements in magnitude images from NMR phased arrays , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[27]  Pew-Thian Yap,et al.  Robust Fusion of Diffusion MRI Data for Template Construction , 2017, Scientific Reports.

[28]  Jan Sijbers,et al.  Denoising of diffusion MRI using random matrix theory , 2016, NeuroImage.

[29]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[30]  Jerry L. Prince,et al.  Estimation of fiber orientations using neighborhood information , 2016, Medical Image Anal..

[31]  Pierrick Coupé,et al.  Non-Local Means Variants for Denoising of Diffusion-Weighted and Diffusion Tensor MRI , 2007, MICCAI.

[32]  S. Schoenberg,et al.  Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. , 2008, Magnetic resonance imaging.

[33]  Carlo Pierpaoli,et al.  Probabilistic Identification and Estimation of Noise (piesno): a Self-consistent Approach and Its Applications in Mri , 2009 .

[34]  S. D. Babacan,et al.  Denoising diffusion‐weighted magnitude MR images using rank and edge constraints , 2014, Magnetic resonance in medicine.

[35]  Jean-Philippe Thiran,et al.  Sparse regularization for fiber ODF reconstruction: from the suboptimality of $\ell_2$ and $\ell_1$ priors to $\ell_0$ , 2012, 1208.2247.

[36]  Stamatios N. Sotiropoulos,et al.  An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging , 2016, NeuroImage.

[37]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[38]  Santiago Aja-Fernández,et al.  Noise estimation in parallel MRI: GRAPPA and SENSE. , 2014, Magnetic resonance imaging.

[39]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[40]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[41]  Yann Gousseau,et al.  A Bias-Variance Approach for the Nonlocal Means , 2011, SIAM J. Imaging Sci..

[42]  E. McVeigh,et al.  Signal‐to‐noise measurements in magnitude images from NMR phased arrays , 1997 .

[43]  Xudong Jiang,et al.  Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Nikolaus Weiskopf,et al.  Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS , 2014, NeuroImage.

[45]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[46]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[47]  Jean-Philippe Thiran,et al.  Phantomas: a flexible software library to simulate diffusion MR phantoms , 2014 .

[48]  Rachid Deriche,et al.  Impact of Rician Adapted Non-Local Means Filtering on HARDI , 2008, MICCAI.

[49]  Dinggang Shen,et al.  Spatio‐angular consistent construction of neonatal diffusion MRI atlases , 2017, Human brain mapping.

[50]  A. Leemans,et al.  Comprehensive framework for accurate diffusion MRI parameter estimation , 2013, Magnetic resonance in medicine.

[51]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[52]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[53]  Maxime Descoteaux,et al.  Non Local Spatial and Angular Matching : Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising , 2016, Medical Image Anal..

[54]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[55]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[56]  Julien Cohen-Adad,et al.  Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast , 2015, NeuroImage.

[57]  Olivier Commowick,et al.  Using bilateral symmetry to improve non-local means denoising of MR brain images , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[58]  Charles-Alban Deledalle,et al.  Non-local Methods with Shape-Adaptive Patches (NLM-SAP) , 2012, Journal of Mathematical Imaging and Vision.

[59]  Dinggang Shen,et al.  Uncertainty Estimation in Diffusion MRI Using the Nonlocal Bootstrap , 2014, IEEE Transactions on Medical Imaging.