Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei

[1]  J. McNamara,et al.  Intra- and extracellular osmotic regulation in the hololimnetic Caridea and Anomura: a phylogenetic perspective on the conquest of fresh water by the decapod Crustacea , 2011, Journal of Comparative Physiology B.

[2]  D. Huong,et al.  Na/K-ATPase activity and osmo-ionic regulation in adult whiteleg shrimp Litopenaeus vannamei exposed to low salinities. , 2010 .

[3]  I. McGaw,et al.  Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure , 2010, Journal of Comparative Physiology B.

[4]  L. Vinatea,et al.  Combined effect of body weight, temperature and salinity on shrimp Litopenaeus vannamei oxygen consumption rate , 2009 .

[5]  J. McNamara,et al.  Evolutionary transition to freshwater by ancestral marine palaemonids: evidence from osmoregulation in a tide pool shrimp , 2009 .

[6]  C. A. Freire,et al.  Do osmoregulators have lower capacity of muscle water regulation than osmoconformers? A study on decapod crustaceans. , 2009, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[7]  C. A. Strüssmann,et al.  Short-term Responses of the Adults of the Common Japanese Intertidal Crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at Different Salinities: Osmoregulation, Oxygen Consumption, and Ammonia Excretion , 2009 .

[8]  G. Charmantier,et al.  Osmotic and Ionic Regulation in Aquatic Arthropods , 2008 .

[9]  David H. Evans,et al.  Osmotic and Ionic Regulation : Cells and Animals , 2008 .

[10]  H. Onken,et al.  A structure-function analysis of ion transport in crustacean gills and excretory organs. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[11]  J. Vitule,et al.  Muscle water control in crustaceans and fishes as a function of habitat, osmoregulatory capacity, and degree of euryhalinity. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[12]  J. McNamara,et al.  Adaptive shifts in osmoregulatory strategy and the invasion of freshwater by brachyuran crabs: evidence from Dilocarcinus pagei (Trichodactylidae). , 2007, Journal of experimental zoology. Part A, Ecological genetics and physiology.

[13]  J. Qin,et al.  Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities , 2007 .

[14]  M. G. Sarower,et al.  Physiological function and metabolism of free D-alanine in aquatic animals. , 2005, Biological & pharmaceutical bulletin.

[15]  Y. Kera,et al.  Effects of hypoxic and osmotic stress on the free D-aspartate level in the muscle of blood shell Scapharca broughtonii , 2005, Amino Acids.

[16]  J. Rosa,et al.  Free amino acid pools as effectors of osmostic adjustment in different tissues of the freshwater shrimp macrobrachium olfersii (crustacea, decapoda) during long-term salinity acclimation , 2004 .

[17]  C. A. Strüssmann,et al.  Short‐term responses of adult kuruma shrimp Marsupenaeus japonicus (Bate) to environmental salinity: osmotic regulation, oxygen consumption and ammonia excretion , 2004 .

[18]  A. Mandal,et al.  Calcium regulation in crustaceans during the molt cycle: a review and update. , 2004, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[19]  M. Wheatly,et al.  Calcium homeostasis in crustaceans: subcellular Ca dynamics. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[20]  Tamaki Fujimori,et al.  Physiological roles of free D- and L-alanine in the crayfish Procambarus clarkii with special reference to osmotic and anoxic stress responses. , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[21]  D. Towle,et al.  Osmoregulation by Gills of Euryhaline Crabs: Molecular Analysis of Transporters1 , 2001 .

[22]  D. Lemos,et al.  Growth, oxygen consumption, ammonia-N excretion, biochemical composition and energy content of Farfantepenaeus paulensis Pérez-Farfante (Crustacea, Decapoda, Penaeidae) early postlarvae in different salinities. , 2001, Journal of experimental marine biology and ecology.

[23]  Benedict M Long,et al.  Amino acids in haemolymph, single fibres and whole muscle from the claw of freshwater crayfish acclimated to different osmotic environments. , 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[24]  E. Okuma,et al.  Effects of Seawater Acclimation on the Levels of Free D- and L-Alanine and Other Osmolytes in the Japanese Mitten Crab Eriocheir japonicus , 1999 .

[25]  T. Date,et al.  Rat Liver Serine Dehydratase , 1999, The Journal of Biological Chemistry.

[26]  Amy G. Aslamkhan,et al.  Ion Transport Processes of Crustacean Epithelial Cells , 1999, Physiological and Biochemical Zoology.

[27]  J. Navarro,et al.  Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities , 1998 .

[28]  Chenu-Bordon Jc,et al.  Hemolymph ammonia and urea and nitrogenous excretions of Scylla serrata at different temperature and salinity levels , 1996 .

[29]  S. Wright,et al.  Salinity change and cell volume: the response of tissues from the estuarine mussel Geukensia demissa. , 1996, The Journal of experimental biology.

[30]  Henry,et al.  A comparison of the gill physiology of two euryhaline crab species, Callinectes sapidus and Callinectes similis: energy production, transport-related enzymes and osmoregulation as a function of acclimation salinity , 1995, The Journal of experimental biology.

[31]  E. Okuma,et al.  Simultaneous determination of D- and L-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. , 1994, Journal of chromatography. B, Biomedical applications.

[32]  Abe Hiroki,et al.  Total D-amino and other free amino acids increase in the muscle of crayfish during seawater acclimation , 1994 .

[33]  F. Nan,et al.  Changes of Oxygen Consumption and Ammonia-N Excretion by Penaeus chinensis Osbeck at Different Temperature and Salinity Levels , 1993 .

[34]  Jiann-Chu Chen,et al.  Effects of temperature and salinity on oxygen consumption and ammonia-N excretion of juvenile Penaeus japonicus Bate , 1993 .

[35]  P. Moyle,et al.  Methods for Fish Biology , 1990 .

[36]  S. Chan,et al.  Characterization of the Molt Stages in Penaeus vannamei: Setogenesis and Hemolymph Levels of Total Protein, Ecdysteroids, and Glucose , 1988 .

[37]  M. Regnault NITROGEN EXCRETION IN MARINE AND FRESH‐WATER CRUSTACEA , 1987 .

[38]  G. D. Via Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: II. Free amino acids , 1986 .

[39]  T. Kinoshita,et al.  o-Phthalaldehyde—N-acetyl-L-cysteine as a chiral derivatization reagent for liquid chromatographic optical resolution of amino acid ernantiomers and its application to conventional amino acid analysis , 1986 .

[40]  G. Finne,et al.  Effect of Environmental Salinity on the Free Amino Acid Composition and Concentration in Penaeid Shrimp , 1984 .

[41]  D. H. Spaargaren The ammonium excretion of the shore crab, carcinus maenas, in relation to environmental osmotic conditions , 1982 .

[42]  R. Gilles,et al.  Cell volume regulation in crustaceans: Relationship between mechanisms for controlling the osmolality of extracellular and intracellular fluids , 1981 .

[43]  C. B. Cowey,et al.  BIOCHEMICAL STUDIES ON THE PRODUCTION OF MARINE ZOOPLANKTON , 1968, Biological reviews of the Cambridge Philosophical Society.

[44]  Monika Wieliczko,et al.  [Calcium homeostasis]. , 2013, Wiadomosci lekarskie.

[45]  B. Kapoor,et al.  Fish life in special environments , 2009 .

[46]  J. McNamara,et al.  The ontogeny of isosmotic intracellular regulation in the diadromous, freshwater palaemonid shrimps, Macrobrachium amazonicum and M. olfersi (Decapoda) , 2007 .

[47]  A. Péqueux,et al.  OSMOTIC REGULATION IN CRUSTACEANS , 1995 .

[48]  E. Okuma,et al.  Distribution of Free D-Amino Acids in the Tissues of Crustaceans , 1995 .

[49]  S. Cheng,et al.  Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels , 1994 .

[50]  W. Potts,et al.  Intracellular osmotic regulation in Crangon vulgaris , 1985 .

[51]  M. Subhashini Free Amino Acids , 1981 .

[52]  E. Schoffeniels,et al.  Hemocyanin synthesis during hypo-osmotic stress in the shore crab Carcinus maenas (L.) , 1979 .

[53]  R. Gilles Effects of osmotic stresses on the proteins concentration and pattern of Eriocheir sinensis blood. , 1977, Comparative biochemistry and physiology. A, Comparative physiology.

[54]  C. Hammen,et al.  Early ammonia release by a polychaete Nereis virens and a crab Carcinus maenas in diluted sea water. , 1975, Comparative biochemistry and physiology. A, Comparative physiology.