Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli

Abstract The ATP-binding cassette (ABC) transporter ProU from Escherichia coli translocates a wide range of compatible solutes and contributes to the regulation of cell volume, which is particularly important when the osmolality of the environment fluctuates. We have purified the components of ProU, i.e., the substrate-binding protein ProX, the nucleotide-binding protein ProV and the transmembrane protein ProW, and reconstituted the full transporter complex in liposomes. We engineered a lipid anchor to ProX for surface tethering of this protein to ProVW-containing proteoliposomes. We show that glycine betaine binds to ProX with high-affinity and is transported via ProXVW in an ATP-dependent manner. The activity ProU is salt and anionic lipid-dependent and mimics the ionic strength-gating of transport of the homologous OpuA system.

[1]  M. Meinecke,et al.  Impacts of the Osmolality and the Lumenal Ionic Strength on Osmosensory Transporter ProP in Proteoliposomes* , 2012, The Journal of Biological Chemistry.

[2]  R. Otten,et al.  Cystathionine β-Synthase (CBS) Domains 1 and 2 Fulfill Different Roles in Ionic Strength Sensing of the ATP-binding Cassette (ABC) Transporter OpuA* , 2011, The Journal of Biological Chemistry.

[3]  Ziqiang Guan,et al.  Cardiolipin and the osmotic stress responses of bacteria. , 2009, Biochimica et biophysica acta.

[4]  B. Poolman,et al.  Engineering of Ion Sensing by the Cystathionine β-Synthase Module of the ABC Transporter OpuA* , 2009, Journal of Biological Chemistry.

[5]  K. Venkitanarayanan,et al.  Role of proP and proU in Betaine Uptake by Yersinia enterocolitica under Cold and Osmotic Stress Conditions , 2008, Applied and Environmental Microbiology.

[6]  B. Poolman,et al.  Quality control of overexpressed membrane proteins , 2008, Proceedings of the National Academy of Sciences.

[7]  V. Müller,et al.  The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. , 2007, FEMS microbiology letters.

[8]  G. Beattie,et al.  Characterization of the Osmoprotectant Transporter OpuC from Pseudomonas syringae and Demonstration that Cystathionine-β-Synthase Domains Are Required for Its Osmoregulatory Function , 2007, Journal of bacteriology.

[9]  B. Poolman,et al.  High-throughput cloning and expression in recalcitrant bacteria , 2007, Nature Methods.

[10]  B. Poolman,et al.  Ion Specificity and Ionic Strength Dependence of the Osmoregulatory ABC Transporter OpuA* , 2006, Journal of Biological Chemistry.

[11]  B. Poolman,et al.  A sensor for intracellular ionic strength. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Tampé,et al.  The Binding Specificity of OppA Determines the Selectivity of the Oligopeptide ATP-binding Cassette Transporter* , 2004, Journal of Biological Chemistry.

[13]  J. Cronan Bacterial membrane lipids: where do we stand? , 2003, Annual review of microbiology.

[14]  E. Bremer,et al.  Nucleotide dependent monomer/dimer equilibrium of OpuAA, the nucleotide-binding protein of the osmotically regulated ABC transporter OpuA from Bacillus subtilis. , 2003, Journal of molecular biology.

[15]  B. Poolman,et al.  On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine , 2001, The EMBO journal.

[16]  B. Poolman,et al.  Osmosensing and osmoregulatory compatible solute accumulation by bacteria. , 2001, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[17]  B. Poolman,et al.  Osmoregulated ABC-Transporter Senses Water Stress via Changes in the Physical State of the Membrane , 2000 .

[18]  Edmund R. S. Kunji,et al.  Specificity Mutants of the Binding Protein of the Oligopeptide Transport System of Lactococcus lactis , 2000, Journal of bacteriology.

[19]  E. Bremer,et al.  Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: purification of the glycine betaine binding protein and characterization of a functional lipidless mutant , 1997, Journal of bacteriology.

[20]  E. Bremer,et al.  Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli , 1996, Journal of bacteriology.

[21]  H. Kobayashi,et al.  Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH , 1995, Journal of bacteriology.

[22]  E. Bremer,et al.  OpuA, an Osmotically Regulated Binding Protein-dependent Transport System for the Osmoprotectant Glycine Betaine in Bacillus subtilis(*) , 1995, The Journal of Biological Chemistry.

[23]  E. Bremer,et al.  The osmoprotectant proline betaine is a major substrate for the binding-protein-dependent transport system ProU of Escherichia coli K-12 , 1995, Molecular and General Genetics MGG.

[24]  E. Bremer,et al.  Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU. , 1994, FEMS microbiology reviews.

[25]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[26]  H. Nikaido,et al.  Interaction between maltose‐binding protein and the membrane‐associated maltose transporter complex in Escherichia coli , 1992, Molecular microbiology.

[27]  M. Record,et al.  Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity. Implications for protein-DNA interactions in vivo. , 1991, Journal of molecular biology.

[28]  C. Higgins,et al.  Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? , 1990, FEMS microbiology reviews.

[29]  M. P. Gallagher,et al.  Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Gowrishankar,et al.  Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli , 1989, Journal of bacteriology.

[31]  G. Ames,et al.  Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex. , 1989, The Journal of biological chemistry.

[32]  E. Gilson,et al.  Evidence for high affinity binding‐protein dependent transport systems in gram‐positive bacteria and in Mycoplasma. , 1988, The EMBO journal.

[33]  A. Middendorf,et al.  Cloned structural genes for the osmotically regulated binding‐protein‐dependent glycine betaine transport system (ProU) of Escherichia coli K‐12 , 1988, Molecular microbiology.

[34]  Daniel,et al.  Isolation and characterization of Streptococcus cremoris Wg2-specific promoters , 1987, Applied and environmental microbiology.

[35]  Anne Barron,et al.  Purification and characterization of a glycine betaine binding protein from Escherichia coli. , 1987, The Journal of biological chemistry.

[36]  G. May,et al.  Binding protein dependent transport of glycine betaine and its osmotic regulation in Escherichia coli K12 , 1986, Molecular and General Genetics MGG.

[37]  J. Cairney,et al.  Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium , 1986, Journal of bacteriology.

[38]  J. Cairney,et al.  Osmoregulation of Gene Expression in Salmonella typhimurium: proU Encodes an Osmotically Induced Betaine Transport System , 1986, Journal of bacteriology.

[39]  J. M. Wood,et al.  Proline transport and osmotic stress response in Escherichia coli K-12 , 1986, Journal of bacteriology.

[40]  A. Strøm,et al.  Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli , 1986, Journal of bacteriology.

[41]  J. Cairney,et al.  Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system , 1985 .

[42]  D. le Rudulier,et al.  Glycine betaine transport in Escherichia coli: osmotic modulation , 1985, Journal of bacteriology.

[43]  G. Richarme,et al.  Study of binding protein-ligand interaction by ammonium sulfate-assisted adsorption on cellulose esters filters. , 1983, Biochimica et biophysica acta.

[44]  S. Cohen,et al.  Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. , 1980, Journal of molecular biology.

[45]  A. K. Solomon,et al.  Cation Transport in Escherichia coli , 1966, The Journal of general physiology.

[46]  S. Schultz,et al.  Cation Transport in Escherichia coli , 1965, The Journal of general physiology.

[47]  T. Palmer,et al.  Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em. , 2009, Trends in microbiology.

[48]  B. Poolman,et al.  Membrane reconstitution of ABC transporters and assays of translocator function , 2008, Nature Protocols.

[49]  V. Heide Osmoregulated ABC transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane , 2000 .

[50]  S. Schultz,et al.  Cation Transport in Escherichia coli V . Regulation of cation content , 2022 .