Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation

[1]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[2]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[3]  T. Minemoto,et al.  Simulation of optimum band-gap grading profile of Cu2ZnSn(S,Se)4 solar cells with different optical and defect properties , 2014 .

[4]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[5]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[6]  David Cahen,et al.  Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3−xClx perovskite solar cells , 2014, Nature Communications.

[7]  K. Aoyagi,et al.  Optimum bandgap profile analysis of Cu(In,Ga)Se2 solar cells with various defect densities by SCAPS , 2014 .

[8]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[9]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[10]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[11]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[12]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[13]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[14]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[15]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[16]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[17]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[18]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[19]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[20]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[21]  Michael Grätzel,et al.  Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro‐MeOTAD , 2007 .

[22]  Marc Burgelman,et al.  Indications for presence and importance of interface states in CdTe/CdS solar cells , 2003 .

[23]  R. Klenk Characterisation and modelling of chalcopyrite solar cells , 2001 .

[24]  J. Werner,et al.  Back surface band gap gradings in Cu(In, Ga)Se2 solar cells , 2001 .

[25]  Takashi Minemoto,et al.  Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation , 2001 .

[26]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[27]  M. Bhushan,et al.  Polycrystalline Zn3P2 Schottky barrier solar cells , 1998 .

[28]  N. Miura,et al.  Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 , 1994 .

[29]  Paul A. Basore,et al.  Numerical modeling of textured silicon solar cells using PC-1D , 1990 .

[30]  W. A. Anderson,et al.  An 8% efficient layered Schottky‐barrier solar cell , 1974 .

[31]  W. Anderson,et al.  Schottky barrier diodes for solar energy conversion , 1972 .

[32]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[33]  Jenny Nelson,et al.  Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound , 2003 .