Narrow bandgap in β-BaZn₂As₂ and its chemical origins.

β-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that β-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of β-BaZn2As2 (previously reported value ~0.2 eV) is 1 order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of β-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the temperature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemical bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the nonbonding Ba 5d(x(2)-y(2)) orbitals form an unexpectedly deep conduction band minimum (CBM) in β-BaZn2As2 although the CBM of LaZnAsO is formed mainly of Zn 4s. These two origins provide a quantitative explanation for the bandgap difference between β-BaZn2As2 and LaZnAsO.

[1]  A. L. Ivanovskii,et al.  Elastic, electronic properties and intra-atomic bonding in orthorhombic and tetragonal polymorphs of BaZn2As2 from first-principles calculations , 2014 .

[2]  T. Kamiya,et al.  Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2 , 2013, 1311.6532.

[3]  P. Böni,et al.  New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors , 2013, Nature Communications.

[4]  D. Johnston,et al.  Crystal growth and physical properties of SrCu2As2, SrCu2Sb2, and BaCu2Sb2 , 2011, 1112.2722.

[5]  H. Mizoguchi,et al.  A germanate transparent conductive oxide , 2011, Nature communications.

[6]  R. Cava,et al.  Ferromagnetic quantum critical point induced by dimer-breaking in SrCo 2 (Ge 1− x P x ) 2 , 2011 .

[7]  Y. Matsushita,et al.  Present Status of the NIMS Contract Beamline BL15XU at SPring‐8 , 2010 .

[8]  X. H. Chen,et al.  Pressure-induced unconventional superconductivity near a quantum critical point in CaFe2As2 , 2010, 1002.1114.

[9]  T. Kamiya,et al.  Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2 , 2009, 0907.0666.

[10]  K. Cai,et al.  Synthesis and thermoelectric properties of BaMn2Sb2 single crystals , 2009 .

[11]  R. Pöttgen,et al.  Structure and Optical Properties of the Arsenide Oxides REZnAsO (RE = Y, La–Nd, Sm, Gd–Er) , 2009 .

[12]  T. Kamiya,et al.  Epitaxial film growth and optoelectrical properties of layered semiconductors, LaMnXO (X=P, As, and Sb) , 2009 .

[13]  D. Johnston,et al.  Magnetic, transport, and thermal properties of single crystals of the layered arsenide BaMn 2 As 2 , 2009, 0901.3370.

[14]  A. Sefat,et al.  Electronic structure and magnetism in BaMn2As2 and BaMn2Sb2 , 2009, 0901.0272.

[15]  A. Sefat,et al.  Renormalized behavior and proximity of BaCo2As2 to a magnetic quantum critical point , 2008, 0811.2523.

[16]  B. Scott,et al.  Superconductivity in SrNi$_2$P$_2$ Single Crystals , 2008, 0808.1694.

[17]  T. Kamiya,et al.  Heteroepitaxial growth of layered semiconductors, LaZnOPn (Pn = P and As) , 2008 .

[18]  Marcus Tegel,et al.  Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2. , 2008, Physical review letters.

[19]  T. Kamiya,et al.  Nickel-based layered superconductor, LaNiOAs , 2008, 0805.4340.

[20]  Hideo Hosono,et al.  Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy , 2008 .

[21]  Hideo Hosono,et al.  Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. , 2008, Journal of the American Chemical Society.

[22]  T. Kamiya,et al.  Apparent bipolarity and Seebeck sign inversion in a layered semiconductor : LaZnOP , 2007 .

[23]  A. Mewis,et al.  Neue Arsenide mit ThCr2Si2- oder einer damit verwandten Struktur: Die Verbindungen ARh2As2 (A: Eu, Sr, Ba) und BaZn2As2 / New Arsenides with ThCr2Si2-type or Related Structures: The Compounds ARh2As2 (A: Eu, Sr, Ba) and BaZn2As2 , 2007 .

[24]  T. Kamiya,et al.  Iron-based layered superconductor: LaOFeP. , 2006, Journal of the American Chemical Society.

[25]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[26]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[27]  H. Ohta,et al.  Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films , 2003 .

[28]  H. Hosono,et al.  Transparent p-type semiconductor: LaCuOS layered oxysulfide , 2000 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  A. Mudryi,et al.  Optical properties of AIIBV semiconductor compounds , 1996 .

[32]  S. Kauzlarich,et al.  Resistivity and magnetism of AMn2P2 (A=Sr, Ba): the effect of structure type on physical properties , 1994 .

[33]  C. Zheng,et al.  Making and breaking bonds in the solid state: the ThCr2Si2 structure , 1985 .

[34]  J. Misiewicz,et al.  Optical band-gap of Zn3As2 , 1979 .

[35]  A. Mewis,et al.  Zur Struktur der Verbindungen BaZn2P2 und BaZn2As2 / The Crystal Structure of BaZn2P2 and BaZn2As2 , 1978 .

[36]  S. Franssila,et al.  Thin Solid Films , 2009 .

[37]  David J. Singh,et al.  Itinerant antiferromagnetism in BaCr 2 As 2 : Experimental characterization and electronic structure calculations , 2009 .

[38]  P. Paufler,et al.  On the coordination of ThCr2Si2 (BaAl4-type compounds within the field of free parameters , 1996 .