Electronic transport properties of conducting polymers and carbon nanotubes

We review and compare electronic transport in different types of conducting polymer: conjugated organic polymers, the inorganic polymer polysulphur nitride, alkali-metal fulleride polymers, and carbon nanotubes. In each case, the transport properties show some unusual features compared to conventional metals. In conjugated organic conducting polymers, electronic transport shows a systematic pattern involving both metallic and non-metallic character. We discuss the physical conduction processes that can account for this behaviour. Key roles are played by the metal-semiconductor transition as the doping level is varied, and by the limited size of crystalline regions in the polymers, which gives rise to heterogeneous conduction. Transport data provide indirect evidence that the intrinsic conductivity of doped crystalline polyacetylene, in the absence of disordered regions, is higher than that of copper at room temperature; this high conductivity is consistent with the expected suppression of backscattering in highly anisotropic ('quasi-one-dimensional') metallic conduction. Bundles of single-wall carbon nanotubes have also been found to exhibit metallic behaviour. The temperature dependence of the conductivity of bulk samples is remarkably similar to the pattern characteristic of organic conducting polymers, typically showing a crossover from metallic to non-metallic behaviour as temperature decreases. Quantized one-dimensional conductance and other quantum effects are seen in individual nanotubes.

[1]  A. Heeger,et al.  Organic Metals and Semiconductors: The Chemistry of Polyacetylene, (CH)x, and Its Derivatives. , 1980 .

[2]  E. J. Mele,et al.  Temperature-dependent resistivity of single-wall carbon nanotubes , 1997, cond-mat/9704117.

[3]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[4]  P. Calvert,et al.  Durham poly acetylene: preparation and properties of the unoriented material , 1986 .

[5]  D. Suh,et al.  Magnetoresistance of an entangled single-wall carbon-nanotube network , 1998 .

[6]  D. C. Trivedi,et al.  13C CPMAS NMR, XRD, d.c. and a.c. electrical conductivity of aromatic acids doped polyaniline , 1996 .

[7]  Malcolm McCormick,et al.  3-D worlds , 1992 .

[8]  Efetov,et al.  Localization transition in a random network of metallic wires: A model for highly conducting polymers. , 1993, Physical review letters.

[9]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[10]  C. O. Yoon,et al.  Electrical transport in conductive blends of polyaniline in poly(methyl methacrylate) , 1994 .

[11]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[12]  A. Aleshin,et al.  Transport anomalies in highly doped conjugated polymers at low temperatures , 1999 .

[13]  Littlewood,et al.  Fermi-liquid behavior in the electrical resistivity of K3C60 and Rb3C60. , 1994, Physical review. B, Condensed matter.

[14]  Kwanghee Lee,et al.  Comparison of electronic transport properties of soluble polypyrrole and soluble polyaniline doped with dodecylbenzene-sulfonic acid , 1999 .

[15]  A. Heeger,et al.  Solid state polymerization of sulfur nitride (S2N2) to (SN)x , 1976 .

[16]  D. Moses,et al.  High electrical conductivity in doped polyacetylene , 1987, Nature.

[17]  A. B. Kaiser Metallic behaviour in highly conducting polymers , 1991 .

[18]  W. Little POSSIBILITY OF SYNTHESIZING AN ORGANIC SUPERCONDUCTOR , 1964 .

[19]  A. Heeger,et al.  The temperature dependence of the conductivity in the critical regime of the metal - insulator transition in conducting polymers , 1997 .

[20]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[21]  M. Fuhrer,et al.  Localization in single-walled carbon nanotubes , 1998 .

[22]  J. Reynolds,et al.  Magnetic and Transport Properties of Electrochemically Oxidized Polyacetylene , 1985 .

[23]  A. B. Kaiser,et al.  Temperature dependence of conductivity in ‘metallic’ polyacetylene , 1990 .

[24]  Travers,et al.  Aging effects on the transport properties in conducting polymer polypyrrole. , 1996, Physical review. B, Condensed matter.

[25]  L. Degiorgi Fullerenes and carbon derivatives: From insulators to superconductors , 1998 .

[26]  Moses,et al.  Erratum: Transport near the metal-insulator transition: Polypyrrole doped with PF6 , 1994, Physical review. B, Condensed matter.

[27]  M. Yamaura,et al.  Enhancement of electrical conductivity of polypyrrole film by stretching: Counter ion effect , 1988 .

[28]  Alan J. Heeger,et al.  Intrinsic conductivity of conducting polymers , 1988 .

[29]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[30]  O. Chauvet,et al.  Single-Crystalline (KC60)n: A Conducting Linear Alkali Fulleride Polymer , 1994, Science.

[31]  C. O. Yoon,et al.  Nature of the metallic state in conducting polypyrrole. , 1998, Advanced materials.

[32]  Jean-Christophe Charlier,et al.  Electronic structure and quantum transport in carbon nanotubes , 1998 .

[33]  D. Tanner,et al.  Polarized absorption in oriented “new” (CH)χ , 1991 .

[34]  Ping Sheng,et al.  Hopping Conductivity in Granular Disordered Systems , 1983 .

[35]  Electron Hopping Conduction in the Soliton Model of Polyacetylene , 1981 .

[36]  A. Heeger,et al.  Magnetic susceptibility of iodine doped polyacetylene: The effects of nonuniform doping , 1981 .

[37]  Joo,et al.  Microwave dielectric response of mesoscopic metallic regions and the intrinsic metallic state of polyaniline. , 1994, Physical review. B, Condensed matter.

[38]  H. Dai,et al.  Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes , 1999 .

[39]  J. Nagy,et al.  Antilocalization in multiwalled carbon nanotubes , 2000 .

[40]  P. Eklund,et al.  Reversible Intercalation of Charged Iodine Chains into Carbon Nanotube Ropes , 1998 .

[41]  A. B. Kaiser,et al.  LOW-ENERGY CONDUCTIVITY OF PF6-DOPED POLYPYRROLE , 1999 .

[42]  W. R. Salaneck Photoelectron spectroscopy of polyconjugated polymer surfaces and interfaces , 1991 .

[43]  A. B. Kaiser Low Temperature Resistivity Anomaly in Glassy Metals. Two-Level Systems and Incipient Localization versus Correlations , 1986 .

[44]  K. Mizoguchi,et al.  Metallic temperature dependence in the conducting polymer, polyaniline : spin dynamics study by ESR , 1994 .

[45]  G. G. Miller,et al.  Staging in polyacetylene–iodine conductors , 1983 .

[46]  H. Horstmann,et al.  Transport, docking and exocytosis of single secretory granules in live chromaffin cells , 1997, Nature.

[47]  A. Epstein,et al.  Charge transport of camphor sulfonic acid-doped polyaniline and poly(o-toluidine) fibers: role of processing , 1995 .

[48]  D. Moses,et al.  Specific heats of pure and doped polyacetylene , 1980 .

[49]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[50]  Johnson,et al.  Temperature dependence of the electrical conductivity of AsF5-doped poly(p-phenylene vinylene). , 1989, Physical review. B, Condensed matter.

[51]  C. O. Yoon,et al.  Electrical conductivity of highly-oriented-polyacetylene , 1988 .

[52]  H. Naarmann,et al.  New process for the production of metal-like, stable polyacetylene , 1987 .

[53]  Maw-Kuen Wu,et al.  Hall effect and resistivity in metallic Ba1−xKxBiO3 single crystals: Absence of 1/T dependence in Rh and linear-to-quadratic evolution of ϱ(T) , 1993 .

[54]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[55]  Heeger,et al.  Paramagnetic susceptibility of highly conducting polyaniline: Disordered metal with weak electron-electron interactions (Fermi glass). , 1994, Physical review. B, Condensed matter.

[56]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[57]  Moses,et al.  Counterion-induced processibility of polyaniline: Thermoelectric power. , 1993, Physical review. B, Condensed matter.

[58]  Moses,et al.  Transport in polyaniline near the critical regime of the metal-insulator transition. , 1993, Physical review. B, Condensed matter.

[59]  R. Landauer,et al.  Conductance determined by transmission: probes and quantised constriction resistance , 1989 .

[60]  B. Gallagher,et al.  The electron transport properties of metallic glasses , 1988 .

[61]  Langer,et al.  Quantum transport in a multiwalled carbon nanotube. , 1996, Physical review letters.

[62]  A. B. Kaiser,et al.  Doping and temperature dependence of anisotropic conductivity in new polyacetylene , 1992 .

[63]  A. B. Kaiser,et al.  Thermoelectric power and conductivity of heterogeneous conducting polymers. , 1989, Physical review. B, Condensed matter.

[64]  V. Walatka,et al.  Polysulfur Nitride—a One-Dimensional Chain with a Metallic Ground State , 1973 .

[65]  D. Bassett,et al.  Developments in crystalline polymers , 1982 .

[66]  S. Roth,et al.  Electronic transport in carbon nanotube ropes and mats , 1999 .

[67]  H. Shirakawa,et al.  Metallic nature of heavily doped polyacetylene derivatives: Thermopower , 1984 .

[68]  P. Kahol,et al.  An electron-spin-resonance study of polymer interactions with moisture in polyaniline and its derivatives , 1997 .

[69]  J. Strom-Olsen,et al.  Scaling behavior in amorphous and disordered metals , 1984 .

[70]  G. Bergmann,et al.  Weak localization in thin films: a time-of-flight experiment with conduction electrons , 1984 .

[71]  Ping Sheng,et al.  Fluctuation-induced tunneling conduction in disordered materials , 1980 .

[72]  A. Heeger,et al.  Metallic conductivity of highly doped poly(3,4-ethylenedioxythiophene) , 1999 .

[73]  N. T. Kemp,et al.  Comparison of electronic transport in polyaniline blends, polyaniline and polypyrrole , 1997 .

[74]  Chauvet,et al.  Hopping in disordered conducting polymers. , 1994, Physical review. B, Condensed matter.

[75]  J. Unsworth,et al.  Optimization of synthesis conditions of polypyrrole from aqueous solutions , 1989 .

[76]  T. Mietzner,et al.  Dispersion-induced insulator-to-metal transition in polyaniline , 2000 .

[77]  Y. Kim,et al.  Synthesis and Characterization of Soluble Polypyrrole , 1997 .

[78]  Daniel Moses,et al.  Hopping transport in doped conducting polymers in the insulating regime near the metal-insulator boundary: polypyrrole, polyaniline and polyalkylthiophenes , 1995 .

[79]  A. Heeger,et al.  Electrical transport in doped polyacetylene , 1980 .

[80]  J. J. Hauser Hopping conductivity in amorphous antimony , 1974 .

[81]  A. Monkman,et al.  Conductivity studies of polyaniline doped with CSA , 1996 .

[82]  Oszlányi,et al.  Metallic conductivity and metal-insulator transition in (AC60)n (A=K, Rb, and Cs) linear polymer fullerides. , 1995, Physical review. B, Condensed matter.

[83]  A. M. Rao,et al.  Large-scale purification of single-wall carbon nanotubes: process, product, and characterization , 1998 .

[84]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[85]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[86]  A. Heeger,et al.  Semiconductor-metal transition in doped (CH)x: Thermoelectric power , 1979 .

[87]  Stephens,et al.  Dimerization in KC60 and RbC60. , 1995, Physical review. B, Condensed matter.

[88]  J. Tanaka,et al.  Spectral characterization of the electronic structure of new type polyacetylene , 1991 .

[89]  U. Edlund,et al.  Fullerenes and fullerene nanostructures , 1996 .

[90]  S. Amelinckx,et al.  Electron diffraction and microscopy of nanotubes , 1999 .

[91]  H. Shirakawa,et al.  Preparation and morphology of as-prepared and highly stretch-aligned polyacetylene , 1980 .

[92]  A. Bartl Influence of Molecular Structure and Morphology on the Transport Properties of Polyacetylene Studied by ESR , 1993 .

[93]  Yuri Choi,et al.  Metallic electrical transport of PF6-doped polypyrrole : dc conductivity and thermoelectric power , 1997 .

[94]  D. Suh,et al.  Metallic temperature dependence of resistivity in perchlorate doped polyacetylene , 1998, cond-mat/9809106.

[95]  Joo,et al.  Crossover in Electrical Frequency Response through an Insulator-Metal Transition. , 1996, Physical review letters.

[96]  J. Tsukamoto Recent advances in highly conductive polyacetylene , 1992 .

[97]  P. Ajayan,et al.  Electrical resistance of a single carbon nanotube , 1996 .

[98]  Chang,et al.  Electronic properties of graphite nanotubules from galvanomagnetic effects. , 1994, Physical review letters.

[99]  L. Forró,et al.  HALL EFFECT AND MAGNETORESISTANCE OF CARBON NANOTUBE FILMS , 1997 .

[100]  A. Heeger,et al.  Temperature dependence of DC-conductivity in poly(3-alkylthiophenes) in temperature regime 20-400 K , 1991 .

[101]  P. Rannou,et al.  Is granularity the determining feature for electron transport in conducting polymers , 1999 .

[102]  G. Thummes,et al.  Dimensional cross-over in the low-temperature electrical conductivity of potassium-doped polyacetylene , 1988 .

[103]  J. F. Kwak,et al.  Transport properties of heavily AsF5 doped polyacetylene , 1979 .

[104]  G. Street,et al.  Conductivity and Hall effect measurements in doped polyacetylene , 1978 .

[105]  H. Kaneko,et al.  Non-Linear Electrical Conductivity of Highly Conducting Iodine-Doped Polyacetylene , 1993 .

[106]  Li,et al.  Highly conducting polyacetylene: Three-dimensional delocalization. , 1991, Physical review. B, Condensed matter.

[107]  D. Naugle Electron transport in amorphous metals , 1984 .

[108]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[109]  A. Monkman,et al.  Thermoelectric power measurements in highly conductive stretch-oriented polyaniline films , 1995 .

[110]  Moses,et al.  Pressure dependence of the conductivity and magnetoconductance in oriented iodine-doped polyacetylene. , 1994, Physical review. B, Condensed matter.

[111]  A. Heeger,et al.  Electrical conductivity of (SN)x , 1976 .

[112]  Sasaki,et al.  Low-temperature electrical conductivity of highly conducting polyacetylene in a magnetic field. , 1991, Physical review. B, Condensed matter.

[113]  T. Fukuhara,et al.  Metallic temperature dependence of resistivity in polypyrrole and poly(3-methylthiophene) at low temperatures with and without pressure , 1997 .

[114]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[115]  S. Roth,et al.  Conductivity of doped polyacetylene with mechanically-modified morphology , 1989 .

[116]  C. K. Subramaniam,et al.  Conductivity and thermopower of blends of polyaniline with insulating polymers (PETG and PMMA) , 1996 .

[117]  N. T. Kemp,et al.  Thermoelectric power and conductivity of different types of polypyrrole , 1999 .

[118]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[119]  R. Greene,et al.  Superconductivity in Polysulfur Nitride ( SN ) X , 1975 .

[120]  B. Wessling Scientific and Commercial Breakthrough for Organic Metals , 1997 .

[121]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[122]  Vincent Bayot,et al.  Electrical resistance of a carbon nanotube bundle , 1994 .

[123]  D. Suh,et al.  Magnetothermopower of single wall carbon nanotube newtwork , 1999 .

[124]  S. Masubuchi,et al.  Intrinsic transport properties in electrochemically prepared polythiophene doped with PF6 , 1995 .

[125]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[126]  Richard E. Smalley,et al.  METALLIC RESISTIVITY IN CRYSTALLINE ROPES OF SINGLE-WALL CARBON NANOTUBES , 1997 .

[127]  P. Sheng Feature article: Electronic transport in granular metal films† , 1992 .

[128]  A. B. Kaiser,et al.  Heterogeneous model for conduction in carbon nanotubes , 1998 .

[129]  G. Thummes,et al.  Heterogeneous electrical conductivity in metallic polyacetylene films , 1992 .

[130]  T. Ishiguro,et al.  Low-Temperature Metallic Conductance in PF6-Doped Polypyrrole , 1997 .

[131]  G. Leising,et al.  Anisotropic transport properties of highly doped Durham-Graz polyacetylene , 1993 .

[132]  Leising Anisotropy of the optical constants of pure and metallic polyacetylene. , 1988, Physical review. B, Condensed matter.

[133]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[134]  A. Epstein,et al.  Inhomogeneous disorder and the modified Drude metallic state of conducting polymers , 1994 .

[135]  T. Schimmel,et al.  DC-conductivity on a new type of highly conducting polyacetylene, N-(CH)x , 1988 .

[136]  P. Albouy,et al.  Recent structural investigations of metallic polymers , 1994 .

[137]  M. Tian,et al.  Thermoelectric power behavior in carbon nanotubule bundles from 4.2 to 300 K , 1998 .

[138]  S. Roth,et al.  Non-solitonic conductivity in polyacetylene , 1986 .

[139]  W. T. Smith,et al.  Morphology of polypyrrole films grown in thin-layer cells and on indium-tin oxide conductive glass , 1995 .

[140]  C. O. Yoon,et al.  Conductivity and thermoelectric power of the newly processed polyacetylene , 1989 .

[141]  K. Murata,et al.  Study on the electrical conduction mechanism of polypyrrole films , 1991 .

[142]  L. Forró,et al.  Orthorhombic A1C60: A conducting linear alkali fulleride polymer? , 1994 .

[143]  A. B. Kaiser,et al.  Thermoelectric power and conductivity of iodine‐doped ‘‘new’’ polyacetylene , 1991 .

[144]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[145]  J. Travers,et al.  Effect of aging induced disorder on transport properties of PANI-CSA , 1997 .

[146]  D. Suh,et al.  Conductivity and magnetoresistance of polyacetylene fiber network , 1999 .

[147]  Paul J Phillips REVIEW: Polymer crystals , 1990 .

[148]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[149]  A. Rinzler,et al.  Carbon nanotube actuators , 1999, Science.

[150]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[151]  D. Tanner,et al.  Role of Solitons in Nearly Metallic Polyacetylene , 1983 .

[152]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[153]  J. Brédas,et al.  Evolution of the electronic structure of polyacetylene and polythiophene as a function of doping level and lattice conformation. , 1988, Physical review. B, Condensed matter.

[154]  N. Mott,et al.  Metal-insulator transitions in non-crystalline systems , 1985 .

[155]  J. Mintmire,et al.  First-principles band structures of armchair nanotubes , 1998 .

[156]  Wang,et al.  Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional "metallic" states. , 1992, Physical review. B, Condensed matter.

[157]  A. Rinzler,et al.  Thermoelectric Power of Single-Walled Carbon Nanotubes , 1998 .

[158]  Noguchi,et al.  Electronic transport in the metallic state of oriented poly(p-phenylenevinylene). , 1996, Physical review. B, Condensed matter.

[159]  Stollhoff,et al.  Why polyacetylene dimerizes: Results of ab initio computations. , 1990, Physical review letters.

[160]  Volkov,et al.  Supercurrents through single-walled carbon nanotubes , 1999, Science.

[161]  L. Pietronero Ideal conductivity of carbon π polymers and intercalation compounds , 1983 .

[162]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[163]  A. Pron,et al.  Electrical transport properties of polyacetylene tetrachloroferrate - [CH(FeCl4)y]x] , 1983 .

[164]  D. Gottfredson,et al.  Electronic properties of polyacetylene doped with FeCl3 , 1985 .

[165]  Effect of dimensionality in polymeric fullerenes and single-wall nanotubes , 1998 .

[166]  Subramaniam,et al.  Thermopower of an untwinned YBa2Cu3O7- delta crystal. , 1995, Physical review. B, Condensed matter.

[167]  G. Spinks,et al.  Tunneling spectroscopy and spectroscopic imaging of granular metallicity of polyaniline , 1999 .

[168]  Kaiser Electron-phonon interaction and thermopower nonlinearities in Chevrel-phase compounds. , 1987, Physical review. B, Condensed matter.