T-Coercivity for the Maxwell Problem with Sign-Changing Coefficients

In this paper, we study the time-harmonic Maxwell problem with sign-changing permittivity and/or permeability, set in a domain of ℝ3. We prove, using the T-coercivity approach, that the well-posedness of the two canonically associated scalar problems, with Dirichlet and Neumann boundary conditions, implies the well-posedness of the Maxwell problem. This allows us to give simple and sharp criteria, obtained in the study of the scalar cases, to ensure that the Maxwell transmission problem between a classical dielectric material and a negative metamaterial is well-posed.

[1]  Patrick Ciarlet,et al.  A NEW COMPACTNESS RESULT FOR ELECTROMAGNETIC WAVES. APPLICATION TO THE TRANSMISSION PROBLEM BETWEEN DIELECTRICS AND METAMATERIALS , 2008 .

[2]  Lucas Chesnel,et al.  Two-dimensional Maxwell's equations with sign-changing coefficients , 2014 .

[3]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[4]  Stefan Enoch,et al.  Perfect lenses made with left-handed materials: Alice's mirror? , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[6]  Serge Nicaise,et al.  A posteriori error estimates for a finite element approximation of transmission problems with sign changing coefficients , 2010, J. Comput. Appl. Math..

[7]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[8]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[9]  Lucas Chesnel,et al.  RADIATION CONDITION FOR A NON-SMOOTH INTERFACE BETWEEN A DIELECTRIC AND A METAMATERIAL , 2013 .

[10]  M. Raffetto,et al.  A Warning About Metamaterials for Users of Frequency-Domain Numerical Simulators , 2008, IEEE Transactions on Antennas and Propagation.

[11]  El Hadji Koné,et al.  Equations intégrales volumiques pour la diffraction d'ondes électromagnétiques par un corps diélectrique , 2010 .

[12]  K. Ramdani,et al.  Lignes supraconductrices : analyse mathematique et numerique , 1999 .

[13]  Patrick Ciarlet,et al.  Time harmonic wave diffraction problems in materials with sign-shifting coefficients , 2010, J. Comput. Appl. Math..

[14]  A. Sihvola,et al.  Surface modes of negative-parameter interfaces and the importance of rounding sharp corners , 2008 .

[15]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[16]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[17]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[18]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[19]  Yuri S. Kivshar,et al.  Wave scattering by metamaterial wedges and interfaces , 2006 .

[20]  Philippe G. Ciarlet,et al.  Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants , 2007 .

[21]  M. Costabel,et al.  The essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body , 2012 .

[22]  Armin Lechleiter,et al.  Volume integral equations for scattering from anisotropic diffraction gratings , 2012, 1201.0743.

[23]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[24]  Lucas Chesnel,et al.  Compact Imbeddings in Electromagnetism with Interfaces between Classical Materials and Metamaterials , 2011, SIAM J. Math. Anal..

[25]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[26]  M. Raffetto Ill-posed waveguide discontinuity problem involving metamaterials with impedance boundary conditions on the two ports , 2007 .

[27]  Martin Costabel,et al.  Volume and surface integral equations for electromagnetic scattering by a dielectric body , 2010, J. Comput. Appl. Math..

[28]  Monique Dauge,et al.  Non-coercive transmission problems in polygonal domains. -- Problèmes de transmission non coercifs dans des polygones , 2011, 1102.1409.

[29]  Petri Ola,et al.  Remarks on a Transmission Problem , 1995 .

[30]  Carlo-Maria Zwölf,et al.  Méthodes variationnelles pour la modélisation des problèmes de transmission d’onde électromagnétique entre diélectrique et méta-matériau , 2007 .

[31]  M. Raffetto,et al.  WELL-POSEDNESS AND FINITE ELEMENT APPROXIMABILITY OF TIME-HARMONIC ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS INVOLVING BIANISOTROPIC MATERIALS AND METAMATERIALS , 2009 .

[32]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[33]  M. Cessenat MATHEMATICAL METHODS IN ELECTROMAGNETISM: LINEAR THEORY AND APPLICATIONS , 1996 .

[34]  K. Ramdani,et al.  Analyse spectrale et singularits d'un problme de transmission non coercif , 1999 .

[35]  Lucas Chesnel,et al.  T-COERCIVITY FOR SCALAR INTERFACE PROBLEMS BETWEEN DIELECTRICS AND METAMATERIALS , 2011 .

[36]  Lucas Chesnel,et al.  T-coercivity and continuous Galerkin methods: application to transmission problems with sign changing coefficients , 2013, Numerische Mathematik.

[37]  I. Babuska Error-bounds for finite element method , 1971 .

[38]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.