Kriging Prediction with Isotropic Matern Correlations: Robustness and Experimental Designs

We investigate the prediction performance of the kriging predictors. We derive some non-asymptotic error bounds for the prediction error under the uniform metric and $L_p$ metrics when the spectral densities of both the true and the imposed correlation functions decay algebraically. The Matern family is a prominent class of correlation functions of this kind. We show that, when the smoothness of the imposed correlation function exceeds that of the true correlation function, the prediction error becomes more sensitive to the space-filling property of the design points. In particular, we prove that, the above kriging predictor can still reach the optimal rate of convergence, if the experimental design scheme is quasi-uniform. We also derive a lower bound of the kriging prediction error under the uniform metric and $L_p$ metrics. An accurate characterization of this error is obtained, when an oversmoothed correlation function and a space-filling design is used.

[1]  K. Ritter,et al.  MULTIVARIATE INTEGRATION AND APPROXIMATION FOR RANDOM FIELDS SATISFYING SACKS-YLVISAKER CONDITIONS , 1995 .

[2]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[3]  K. Ritter,et al.  Uniform reconstruction of Gaussian processes , 1997 .

[4]  I. Castillo Lower bounds for posterior rates with Gaussian process priors , 2008, 0807.2734.

[5]  Joseph D. Ward,et al.  Scattered Data Interpolation on Spheres: Error Estimates and Locally Supported Basis Functions , 2002, SIAM J. Math. Anal..

[6]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[7]  C. Walck Hand-book on statistical distributions for experimentalists , 1996 .

[8]  Tirthankar Dasgupta,et al.  Sequential Exploration of Complex Surfaces Using Minimum Energy Designs , 2015, Technometrics.

[9]  Holger Wendland,et al.  Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting , 2004, Math. Comput..

[10]  Klaus Ritter,et al.  Average-case analysis of numerical problems , 2000, Lecture notes in mathematics.

[11]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[12]  Marguerite Zani,et al.  Asymptotic analysis of average case approximation complexity of additive random fields , 2019, J. Complex..

[13]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[14]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[15]  Yuedong Wang Smoothing Spline ANOVA , 2011 .

[16]  Zongmin Wu,et al.  Local error estimates for radial basis function interpolation of scattered data , 1993 .

[17]  A. W. Vaart,et al.  Reproducing kernel Hilbert spaces of Gaussian priors , 2008, 0805.3252.

[18]  Heping Wang,et al.  Average case tractability of multivariate approximation with Gaussian kernels , 2018, J. Approx. Theory.

[19]  J. Sacks,et al.  Designs for Regression Problems With Correlated Errors: Many Parameters , 1968 .

[20]  Harry van Zanten,et al.  Information Rates of Nonparametric Gaussian Process Methods , 2011, J. Mach. Learn. Res..

[21]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[22]  Harald Luschgy,et al.  High-resolution product quantization for Gaussian processes under sup-norm distortion , 2007 .

[23]  Francis J. Narcowich,et al.  Recent developments in error estimates for scattered-data interpolation via radial basis functions , 2005, Numerical Algorithms.

[24]  F. J. Narcowich,et al.  Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions , 2006 .

[25]  By Rui Tuo A THEORETICAL FRAMEWORK FOR CALIBRATION IN COMPUTER MODELS : PARAMETRIZATION , ESTIMATION AND CONVERGENCE PROPERTIES , 2013 .

[26]  Grzegorz W. Wasilkowski,et al.  On the average complexity of multivariate problems , 1990, J. Complex..

[27]  F. J. Hickernell,et al.  Average Case Approximation: Convergence and Tractability of Gaussian Kernels , 2012 .

[28]  H. Triebel,et al.  Function Spaces, Entropy Numbers, Differential Operators: Function Spaces , 1996 .

[29]  C. F. Jeff Wu,et al.  On Prediction Properties of Kriging: Uniform Error Bounds and Robustness , 2017, Journal of the American Statistical Association.

[30]  Chong Gu Smoothing Spline Anova Models , 2002 .

[31]  R. A. Brownlee,et al.  Approximation orders for interpolation by surface splines to rough functions , 2004, 0705.4281.

[32]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[33]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[34]  H. Zanten,et al.  Gaussian process methods for one-dimensional diffusions: optimal rates and adaptation , 2015, 1506.00515.

[35]  E. Saff,et al.  Asymptotics of best-packing on rectifiable sets , 2006, math-ph/0605021.

[36]  Wei-Liem Loh,et al.  Fixed-domain asymptotics for a subclass of Matern-type Gaussian random fields , 2005, math/0602302.

[37]  J. Sacks,et al.  Designs for Regression Problems with Correlated Errors III , 1966 .

[38]  Harald Luschgy,et al.  Sharp asymptotics of the functional quantization problem for Gaussian processes , 2004 .

[39]  Guang Cheng,et al.  Optimal Bayesian estimation in random covariate design with a rescaled Gaussian process prior , 2014, J. Mach. Learn. Res..

[40]  I. Castillo On Bayesian supremum norm contraction rates , 2013, 1304.1761.

[41]  Richard Nickl,et al.  Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions , 2015, 1510.05526.

[42]  R. Handel Probability in High Dimension , 2014 .

[43]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[44]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[45]  Joseph D. Ward,et al.  Scattered-Data Interpolation on Rn: Error Estimates for Radial Basis and Band-Limited Functions , 2004, SIAM J. Math. Anal..

[46]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[47]  A. V. Skorohod,et al.  The theory of stochastic processes , 1974 .

[48]  Mikhail Lifshits,et al.  Approximation of additive random fields based on standard information: Average case and probabilistic settings , 2015, J. Complex..

[49]  Richard Nickl,et al.  Consistency of Bayesian inference with Gaussian process priors in an elliptic inverse problem , 2019, ArXiv.

[50]  Dilip N. Ghosh Roy,et al.  Inverse Problems and Inverse Scattering of Plane Waves , 2001 .