On physical realizability of nonlinear quantum stochastic differential equations

In this article we study physical realizability for a class of nonlinear quantum stochastic differential equations (QSDEs). Physical realizability is a property in which a QSDE corresponds to the dynamics of an open quantum system. We derive a sufficient and necessary condition for a nonlinear QSDE to be physically realizable.

[1]  Franco Fagnola,et al.  Quantum Fokker-Planck models: the Lindblad and Wigner approaches , 2008 .

[2]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[3]  Ian R. Petersen,et al.  Robust stability of uncertain quantum systems , 2012, 2012 American Control Conference (ACC).

[4]  Ryan Hamerly,et al.  Advantages of coherent feedback for cooling quantum oscillators. , 2012, Physical review letters.

[5]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[6]  Seongjai Kim Multivariable Calculus , 2018, The Student's Introduction to <I>Mathematica</I> and the Wolfram Language.

[7]  Guofeng Zhang,et al.  On realization theory of quantum linear systems , 2013, Autom..

[8]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Joseph Kerckhoff,et al.  Superconducting microwave multivibrator produced by coherent feedback. , 2012, Physical review letters.

[10]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[11]  V. P. Belavkin,et al.  Measurement, filtering and control in quantum open dynamical systems , 1999 .

[12]  Naoki Yamamoto,et al.  System Identification for Passive Linear Quantum Systems , 2013, IEEE Transactions on Automatic Control.

[13]  C. Batty OPERATOR ALGEBRAS AND QUANTUM STATISTICAL MECHANICS 1: C*‐ and W*‐Algebras. Symmetry Groups. Decomposition of States. , 1981 .

[14]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[15]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[16]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[17]  Hendra Ishwara Nurdin,et al.  Quantum filtering for multiple input multiple output systems driven by arbitrary zero-mean jointly Gaussian input fields , 2014, ArXiv.

[18]  Joseph Kerckhoff,et al.  Tunable coupling to a mechanical oscillator circuit using a coherent feedback network , 2012, 1211.1950.

[19]  Ian R. Petersen,et al.  On the physical realizability of a class of nonlinear quantum systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[20]  Ian R Petersen,et al.  Coherent $H^{\infty }$ Control for a Class of Annihilation Operator Linear Quantum Systems , 2011, IEEE Transactions on Automatic Control.

[21]  Ian R. Petersen,et al.  Coherent robust H∞ control of uncertain linear quantum stochastic systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[22]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[23]  Milburn,et al.  Quantum theory of optical feedback via homodyne detection. , 1993, Physical review letters.

[24]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[25]  Ian R. Petersen,et al.  Physical Realizability and Preservation of Commutation and Anticommutation Relations for n-Level Quantum Systems , 2016, SIAM J. Control. Optim..

[26]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[27]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[28]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[29]  Changde Xie,et al.  Quantum Coherent Feedback Control for Generation System of Optical Entangled State , 2015, Scientific Reports.

[30]  Derek W. Robinson,et al.  C[*]- and W[*]-algebras symmetry groups decomposition of states , 1987 .

[31]  Jing Zhang,et al.  Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip , 2011, IEEE Transactions on Automatic Control.

[32]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[33]  Michael Seadle Measurement , 2007, The Measurement of Information Integrity.

[34]  Naoki Yamamoto,et al.  Coherent versus measurement feedback: Linear systems theory for quantum information , 2014, 1406.6466.

[35]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[36]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[37]  Naoki Yamamoto,et al.  Experimental Demonstration of Coherent Feedback Control on Optical Field Squeezing , 2011, IEEE Transactions on Automatic Control.

[38]  Hendra Ishwara Nurdin,et al.  On Synthesis of Linear Quantum Stochastic Systems by Pure Cascading , 2010, IEEE Transactions on Automatic Control.

[39]  Ian R. Petersen,et al.  Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control , 2009, 2009 European Control Conference (ECC).