A study on the numerical dissipation of the Spectral Difference method for freely decaying and wall-bounded turbulence

[1]  Jonathan R. Bull,et al.  Simulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes , 2015 .

[2]  A. Jameson,et al.  A note on the numerical dissipation from high-order discontinuous finite element schemes , 2014 .

[3]  Jonathan R. Bull,et al.  Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes , 2014 .

[4]  E. Lamballais,et al.  Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows , 2014 .

[5]  Antony Jameson,et al.  Structural Wall-modeled LES Using a High-order Spectral Difference Scheme for Unstructured Meshes , 2014 .

[6]  Myoungkyu Lee,et al.  A Web-Services accessible database for channel flow turbulence at $Re_\tau$=1000 , 2013 .

[7]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[8]  A. Beck,et al.  On the accuracy of high-order discretizations for underresolved turbulence simulations , 2013 .

[9]  A. Jameson,et al.  Discrete filter operators for large‐eddy simulation using high‐order spectral difference methods , 2013 .

[10]  Xiao-Chuan Cai,et al.  Parallel fully implicit two‐grid methods for distributed control of unsteady incompressible flows , 2013 .

[11]  D. Crowdy Analytical formulae for source and sink flows in multiply connected domains , 2013 .

[12]  Antony Jameson,et al.  On the Non-linear Stability of Flux Reconstruction Schemes , 2012, J. Sci. Comput..

[13]  Antony Jameson,et al.  Insights from von Neumann analysis of high-order flux reconstruction schemes , 2011, J. Comput. Phys..

[14]  Antony Jameson,et al.  A Proof of the Stability of the Spectral Difference Method for All Orders of Accuracy , 2010, J. Sci. Comput..

[15]  Eli Turkel,et al.  An implicit high-order spectral difference approach for large eddy simulation , 2010, J. Comput. Phys..

[16]  Chunlei Liang,et al.  Simulation of Transitional Flow over Airfoils using the Spectral Difference Method , 2010 .

[17]  G. Jacobs,et al.  Large‐eddy simulation of compressible flows using a spectral multidomain method , 2009 .

[18]  Sylvain Laizet,et al.  High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy , 2009, J. Comput. Phys..

[19]  Chunlei Liang,et al.  Large Eddy Simulation of Compressible Turbulent Channel Flow with Spectral Difierence method , 2009 .

[20]  H. T. Huynh,et al.  A Reconstruction Approach to High -Order Schemes Including Discontinuous Galerkin for Diffusion , 2009 .

[21]  Chris Lacor,et al.  On the Stability and Accuracy of the Spectral Difference Method , 2008, J. Sci. Comput..

[22]  Pierre Comte,et al.  Large eddy simulation of compressible channel flow , 2008 .

[23]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[24]  Yi Li,et al.  Data exploration of turbulence simulations using a database cluster , 2007, Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07).

[25]  Y. Kaneda,et al.  Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics , 2007, Journal of Fluid Mechanics.

[26]  Antony Jameson,et al.  Spectral Difference Method for Unstructured Grids II: Extension to the Euler Equations , 2007, J. Sci. Comput..

[27]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[28]  David A. Kopriva,et al.  A Conservative Isothermal Wall Boundary Condition for the Compressible Navier–Stokes Equations , 2007, J. Sci. Comput..

[29]  Christer Fureby,et al.  Simulation of transition and turbulence decay in the Taylor–Green vortex , 2007 .

[30]  Christophe Bailly,et al.  Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering , 2006 .

[31]  Marcel Vinokur,et al.  Spectral difference method for unstructured grids I: Basic formulation , 2006, J. Comput. Phys..

[32]  Christophe Bailly,et al.  Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation , 2006 .

[33]  Yuzhi Sun,et al.  Spectral (finite) volume method for conservation laws on unstructured grids VI: Extension to viscous flow , 2006, J. Comput. Phys..

[34]  Richard Pasquetti,et al.  Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows , 2006, J. Sci. Comput..

[35]  Marcel Vinokur,et al.  Spectral (finite) volume method for conservation laws on unstructured grids V: Extension to three-dimensional systems , 2006, J. Comput. Phys..

[36]  Leland Jameson,et al.  Numerical Convergence Study of Nearly Incompressible, Inviscid Taylor–Green Vortex Flow , 2005, J. Sci. Comput..

[37]  R. Hartmann,et al.  Symmetric Interior Penalty DG Methods for the CompressibleNavier-Stokes Equations I: Method Formulation , 2005 .

[38]  Jung Yul Yoo,et al.  Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes , 2004 .

[39]  Zhi J. Wang,et al.  Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems , 2004 .

[40]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[41]  Zhi Jian Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids III: One Dimensional Systems and Partition Optimization , 2004, J. Sci. Comput..

[42]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[43]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[44]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[45]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[46]  Jörn Sesterhenn,et al.  Turbulent supersonic channel flow , 2001 .

[47]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[48]  Y. Dubief,et al.  On coherent-vortex identification in turbulence , 2000 .

[49]  P. Sagaut,et al.  Subgrid-Scale Models for Large-Eddy Simulations of Compressible Wall Bounded Flows , 2000 .

[50]  J. Tinsley Oden,et al.  A discontinuous hp finite element method for the Euler and Navier–Stokes equations , 1999 .

[51]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[52]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[53]  Prakash Vedula,et al.  Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence , 1999 .

[54]  P. Sagaut,et al.  On the Use of Shock-Capturing Schemes for Large-Eddy Simulation , 1999 .

[55]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[56]  P. Yeung,et al.  On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence , 1997 .

[57]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[58]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[59]  P. Moin,et al.  Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows , 1997 .

[60]  D. Kopriva A Conservative Staggered-Grid Chebyshev Multidomain Method for Compressible Flows. II. A Semi-Structured Method , 1996 .

[61]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[62]  John H. Kolias,et al.  A CONSERVATIVE STAGGERED-GRID CHEBYSHEV MULTIDOMAIN METHOD FOR COMPRESSIBLE FLOWS , 1995 .

[63]  A. Vincent,et al.  The spatial structure and statistical properties of homogeneous turbulence , 1991, Journal of Fluid Mechanics.

[64]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[65]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[66]  Steven A. Orszag,et al.  Intermittent vortex structures in homogeneous isotropic turbulence , 1990, Nature.

[67]  J. Maddox Cosmic rays lose dramatic quality , 1990, Nature.

[68]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[69]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[70]  P. Moin,et al.  Turbulence statistics in fully developed channel flow at low Reynolds number , 1987, Journal of Fluid Mechanics.

[71]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[72]  S. Orszag,et al.  Small-scale structure of the Taylor–Green vortex , 1983, Journal of Fluid Mechanics.

[73]  C. R. Smith,et al.  The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer , 1983, Journal of Fluid Mechanics.

[74]  Eric D. Siggia,et al.  Numerical study of small-scale intermittency in three-dimensional turbulence , 1981, Journal of Fluid Mechanics.

[75]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[76]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[77]  A. Townsend,et al.  The nature of turbulent motion at large wave-numbers , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  A. Townsend,et al.  Decay of turbulence in the final period , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[79]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .