2-D Shape Matching Using Asymmetric Wavelet-Based Dissimilarity Measure

In this paper, a wavelet-based multiscale asymmetric dissimilarity measure for shape matching is proposed. The wavelet transform is used to decompose the shape boundary into a multiscale representation. Given two shapes, a distance matrix is computed from the moment invariants of the wavelet coefficients at all the scale levels. The asymmetric dissimilarity is then calculated from the minimum values across each row on the distance matrix. The proposed asymmetric dissimilarity is a Hausdorff-like measure and is used for finding globally related shapes. The similarity paths obtained from the locations of the minimum distance values can be used to illustrate these relations.

[1]  Remco C. Veltkamp,et al.  State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.

[2]  Mahmoud I. Khalil,et al.  Affine invariants for object recognition using the wavelet transform , 2002, Pattern Recognit. Lett..

[3]  Jan Flusser,et al.  A moment-based approach to registration of images with affine geometric distortion , 1994, IEEE Trans. Geosci. Remote. Sens..

[4]  Wageeh W. Boles,et al.  An application of wavelet-based affine-invariant representation , 1995, Pattern Recognit. Lett..

[5]  C.-C. Jay Kuo,et al.  Wavelet descriptor of planar curves: theory and applications , 1996, IEEE Trans. Image Process..

[6]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Jie Chen,et al.  Affine curve moment invariants for shape recognition , 1997, Pattern Recognit..

[8]  Ronald-Bryan O. Alferez,et al.  Geometric and Illumination Invariants for Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Wen-Huei LIN,et al.  Multiscale Object Recognition under Affine Transformation , 1999 .

[10]  Michael S. Lew,et al.  Principles of Visual Information Retrieval , 2001, Advances in Pattern Recognition.

[11]  Aljoscha Smolic,et al.  A set of visual feature descriptors and their combination in a low-level description scheme , 2000, Signal Process. Image Commun..

[12]  Ramanujan S. Kashi,et al.  2-D Shape Representation and Averaging Using Normalized Wavelet Descriptors , 1996, Simul..

[13]  Sven Loncaric,et al.  A survey of shape analysis techniques , 1998, Pattern Recognit..