ANALYTIC TOOLS FOR THE STUDY OF FLOWS AND INVERSE PROBLEMS
暂无分享,去创建一个
[1] J. Hilgert,et al. Classical and quantum resonances for hyperbolic surfaces , 2016, 1605.08801.
[2] Gerhard Keller,et al. Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .
[3] S. Dyatlov. Resonance projectors and asymptotics for r -normally hyperbolic trapped sets , 2013, 1301.5633.
[4] J. Sjöstrand,et al. Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances , 2008, 0802.1780.
[5] C. Croke. Scattering rigidity with trapped geodesics , 2011, Ergodic Theory and Dynamical Systems.
[6] Mark F. Demers,et al. Exponential decay of correlations for finite horizon Sinai billiard flows , 2015, 1506.02836.
[7] J. Sjöstrand,et al. Upper Bound on the Density of Ruelle Resonances for Anosov Flows , 2010, 1003.0513.
[8] T. Weich,et al. Quantum-Classical Correspondence on Associated Vector Bundles Over Locally Symmetric Spaces , 2017, International Mathematics Research Notices.
[9] M. Tsujii. Quasi-compactness of transfer operators for contact Anosov flows , 2008, 0806.0732.
[10] G. Uhlmann,et al. The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points , 2014, 1402.5559.
[11] Boundary and lens rigidity of finite quotients , 2005 .
[12] L. Tzou,et al. Boundary and lens rigidity for non-convex manifolds , 2017, American Journal of Mathematics.
[13] Charles Hadfield. Ruelle and Quantum Resonances for Open Hyperbolic Manifolds , 2017, 1708.01200.
[14] Calvin C. Moore,et al. Exponential Decay of Correlation Coefficients for Geodesic Flows , 1987 .
[15] S. Dyatlov,et al. Pollicott–Ruelle Resonances for Open Systems , 2014, 1410.5516.
[16] F. Faure. PREQUANTUM CHAOS: RESONANCES OF THE PREQUANTUM CAT MAP , 2006, nlin/0606063.
[17] S. Dyatlov,et al. Power spectrum of the geodesic flow on hyperbolic manifolds , 2014, Analysis & PDE.
[18] Plamen Stefanov,et al. Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds , 2007, math/0701595.
[19] Plamen Stefanov,et al. Boundary rigidity and stability for generic simple metrics , 2004, math/0408075.
[20] V. Sharafutdinov,et al. Integral geometry of tensor fields on a manifold of negative curvature , 1988 .
[21] Fredholm determinants, Anosov maps and Ruelle resonances , 2005, math/0505049.
[22] René Michel,et al. Sur la rigidité imposée par la longueur des géodésiques , 1981 .
[23] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[24] D. Burago,et al. Boundary rigidity and filling volume minimality of metrics close to a flat one , 2010 .
[25] C. Croke,et al. Lens rigidity with trapped geodesics in two dimensions , 2011, 1108.4938.
[26] Marina Ratner,et al. The rate of mixing for geodesic and horocycle flows , 1987, Ergodic Theory and Dynamical Systems.
[27] Carlangelo Liverani,et al. Banach spaces adapted to Anosov systems , 2005, Ergodic Theory and Dynamical Systems.
[28] BY Frédéricnaud. EXPANDING MAPS ON CANTOR SETS AND ANALYTIC CONTINUATION OF ZETA FUNCTIONS , 2005 .
[29] G. Uhlmann,et al. The geodesic X-ray transform with fold caustics , 2010, 1004.1007.
[30] Horocyclic invariance of Ruelle resonant states for contact Anosov flows in dimension 3 , 2017, 1705.07965.
[31] M. Tsujii. Exponential mixing for generic volume-preserving Anosov flows in dimension three , 2016, 1601.00063.
[32] M. Pollicott,et al. Anosov flows and dynamical zeta functions , 2012, 1203.0904.
[33] C. Croke,et al. Rigidity and the distance between boundary points , 1991 .
[34] Jean-Pierre Otal. Le spectre marqué des longueurs des surfaces à courbure négative , 1990 .
[35] Liverani Carlangelo. On Contact Anosov Flows , 2003 .
[36] C. Croke,et al. The marked length-spectrum of a surface of nonpositive curvature☆ , 1992 .
[37] G. Uhlmann,et al. Inverting the local geodesic X-ray transform on tensors , 2014, Journal d'Analyse Mathématique.
[38] M. Salo,et al. Spectral rigidity and invariant distributions on Anosov surfaces , 2012, 1208.4943.
[39] N. V. Dang,et al. Spectral analysis of morse-smale gradient flows. , 2016, 1605.05516.
[40] M. Tsujii,et al. Prequantum transfer operator for symplectic Anosov diffeomorphism , 2012, Astérisque.
[41] M. Tsujii,et al. Band structure of the Ruelle spectrum of contact Anosov flows , 2013, 1301.5525.
[42] C. Guillarmou,et al. Marked boundary rigidity for surfaces , 2016, Ergodic Theory and Dynamical Systems.
[43] A. Katok. Four applications of conformal equivalence to geometry and dynamics , 1988, Ergodic Theory and Dynamical Systems.
[44] M. Zworski,et al. Decay of correlations for normally hyperbolic trapping , 2013, 1302.4483.
[45] C. Croke,et al. Spectral rigidity of a compact negatively curved manifold The first author was partly supported , 1998 .
[46] M. Tsujii. Contact Anosov flows and the Fourier–Bros–Iagolnitzer transform , 2011, Ergodic Theory and Dynamical Systems.
[47] L. Stoyanov. Spectra of Ruelle transfer operators for Axiom A flows , 2008, 0810.1126.
[48] Gunther Uhlmann,et al. Tensor tomography on surfaces , 2011, 1109.0505.
[49] V. Guillemin,et al. Some inverse spectral results for negatively curved 2-manifolds , 1980 .
[50] A. Katok,et al. Differentiability, rigidity and Godbillon-Vey classes for Anosov flows , 1990 .
[51] Gunther Uhlmann,et al. The inverse problem for the local geodesic ray transform , 2012, 1210.2084.
[52] V. Baladi,et al. Anisotropic hölder and sobolev spaces for hyperbolic diffeomorphisms , 2005, math/0505015.
[53] N. S. Dairbekov. Integral geometry problem for nontrapping manifolds , 2006 .
[54] G. Uhlmann,et al. On the microlocal analysis of the geodesic X-ray transform with conjugate points , 2015, 1502.06545.
[55] J. Bourgain,et al. Spectral gaps without the pressure condition , 2016, 1612.09040.
[56] L. Stoyanov. Pinching conditions, linearization and regularity of axiom a flows , 2010, 1010.1594.
[57] Hai E Zhang,et al. Sensitivity analysis of an inverse problem for the wave equation with caustics , 2012, 1211.6220.
[58] Carlangelo Liverani,et al. Smooth Anosov flows: Correlation spectra and stability , 2007 .
[59] R. Bowen. Ergodic theory of Axiom A flows , 1975 .
[60] J. Journé. On a regularity problem occurring in connection with Anosov diffeomorphisms , 1986 .
[61] M. Tsujii,et al. The semiclassical zeta function for geodesic flows on negatively curved manifolds , 2013, 1311.4932.
[62] C. Guillarmou. Invariant distributions and X-ray transform for Anosov flows , 2014, 1408.4732.
[63] G. Uhlmann,et al. Two dimensional compact simple Riemannian manifolds are boundary distance rigid , 2003, math/0305280.
[64] C. Guillarmou. Lens rigidity for manifolds with hyperbolic trapped set , 2014, 1412.1760.
[65] R. Llave,et al. Canonical perturbation theory of Anosov systems, and regularity results for the Livsic cohomology equation , 1985 .
[66] Jean-Pierre Otal,et al. Sur les longueurs des géodésiques d'une métrique à courbure négative dans le disque , 1990 .
[67] D. Dolgopyat. On decay of correlations in Anosov flows , 1998 .
[68] G. Uhlmann,et al. Local and global boundary rigidity and the geodesic X-ray transform in the normal gauge , 2017, Annals of Mathematics.
[69] V. Romanov,et al. On uniqueness of determination of a form of first degree by its integrals along geodesics , 1997 .
[70] M. Vignéras. Varietes Riemanniennes Isospectrales et non Isometriques , 1980 .