Sparse Finite Element Method for Periodic Multiscale Nonlinear Monotone Problems

A sparse tensor product finite element (FE) method is developed for the high-dimensional limiting problem obtained by applying the multiscale convergence to a multiscale nonlinear monotone problem in $\mathbb{R}^d$. The limiting problem is posed in a product space, so tensor product FE spaces are used for discretization. This sparse FE method requires essentially the same number of degrees of freedom to achieve essentially equal accuracy to that of a standard FE scheme for a partial differential equation in $\mathbb{R}^d$. It is proved that for the Euler–Lagrange equation of a two scale convex variational problem in a smooth and convex domain the solution to the high-dimensional limiting equation is smooth. An analytic homogenization error is then established, which together with the FE error provides an explicit error estimate for an approximation to the solution of the original multiscale problem. Without this regularity, such an approximation always exists when the meshsize and the microscale converge ...

[1]  Nicolas Meunier,et al.  Periodic reiterated homogenization for elliptic functions , 2005 .

[2]  Will Light,et al.  Approximation Theory in Tensor Product Spaces , 1985 .

[3]  Rolf Rannacher,et al.  Asymptotic $L^\infty $-Error Estimates for Linear Finite Element Approximations of Quasilinear Boundary Value Problems , 1978 .

[4]  Homogenization of monotone operators , 1990 .

[5]  Yalchin Efendiev,et al.  Numerical Homogenization of Nonlinear Random Parabolic Operators , 2004, Multiscale Model. Simul..

[6]  Antoine Gloria,et al.  An Analytical Framework for the Numerical Homogenization of Monotone Elliptic Operators and Quasiconvex Energies , 2006, Multiscale Model. Simul..

[7]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[8]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[9]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[10]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[11]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[12]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Doina Cioranescu,et al.  Periodic unfolding and homogenization , 2002 .

[15]  S. Chow Finite element error estimates for non-linear elliptic equations of monotone type , 1989 .

[16]  Yalchin Efendiev,et al.  Numerical Homogenization of Monotone Elliptic Operators , 2003, Multiscale Model. Simul..

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[19]  Yalchin Efendiev,et al.  Numerical Homogenization and Correctors for Nonlinear Elliptic Equations , 2004, SIAM J. Appl. Math..

[20]  N. Bakhvalov,et al.  Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials , 1989 .

[21]  Michael E. Taylor,et al.  Partial Differential Equations III , 1996 .

[22]  Jacques-Louis Lions,et al.  REITERATED HOMOGENIZATION OF NONLINEAR MONOTONE OPERATORS , 2001 .

[23]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[24]  W. B. Liu,et al.  Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems , 2005, Numerische Mathematik.

[25]  T. Arbogast Computational aspects of dual-porosity models , 1996 .

[26]  Todd Arbogast,et al.  Derivation of the double porosity model of single phase flow via homogenization theory , 1990 .

[27]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[28]  Yalchin Efendiev,et al.  Multiscale finite element for problems with highly oscillatory coefficients , 2002, Numerische Mathematik.

[29]  Kirill Cherednichenko,et al.  On Full Two-Scale Expansion of the Solutions of Nonlinear Periodic Rapidly Oscillating Problems and Higher-Order Homogenised Variational Problems , 2004 .

[30]  Nils Svanstedt,et al.  Multiscale convergence and reiterated homogenization of parabolic problems , 2005 .

[31]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[32]  G. Allaire Homogenization and two-scale convergence , 1992 .

[33]  T. Hou,et al.  Multiscale Finite Element Methods for Nonlinear Problems and Their Applications , 2004 .

[34]  Gianni Dal Maso,et al.  Correctors for the homogeneization of monotone operators , 1990 .

[35]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .