Monoid-matrix type automata

Monoid-matrix type automata are introduced and studied in this paper. We give a characterization of the cyclic monoid-matrix type automata and the regular monoid-matrix type automata. Also, we provide a method to determine the structures of canonical S@?-automata (canonical C-automata, respectively) whose endomorphism monoids are isomorphic to a given finite meet semilattice with the greatest element (Clifford monoid, respectively).

[1]  伊藤 正美 Algebraic theory of automata and languages , 2004 .

[2]  Abraham Ginzburg,et al.  Algebraic theory of automata , 1968 .

[3]  Charles A. Trauth Group-Type Automata , 1966, JACM.

[4]  Bruce H. Barnes,et al.  Groups of Automorphisms and Sets of Equivalence Classes of Input for Automata , 1965, JACM.

[5]  Masami Ito,et al.  Algebraic Theory of Automata & Languages , 2004 .

[6]  Willibald Dörfler The cartesian composition of automata , 2005, Mathematical systems theory.

[7]  R. Bayer Automorphism Groups and Quotients of Strongly Connected Automata and Monadic Algebras , 1966, SWAT.

[8]  Jing Tian,et al.  Representations of commutative asynchronous automata , 2012, J. Comput. Syst. Sci..

[9]  Masami Ito,et al.  Algebraic structures of automata , 2012, Theor. Comput. Sci..

[10]  Gerard P. Weeg The Automorphism Group of the Direct Product of Strongly Related Automata , 1965, JACM.

[11]  Masami Ito A Representation of Strongly Connected Automata and its Applications , 1978, J. Comput. Syst. Sci..

[12]  Bruce H. Barnes,et al.  On the group of automorphisms of strongly connected automata , 1970, Mathematical systems theory.

[13]  Gerard P. Weeg,et al.  The Structure of an Automaton and Its Operation-Preserving Transformation Group , 1962, JACM.

[14]  Shoichi Noguchi,et al.  A Structure Theory of Automata Characterized by Groups , 1973, J. Comput. Syst. Sci..

[15]  Arthur C. Fleck,et al.  Isomorphism Groups of Automata , 1962, JACM.

[16]  Arthur C. Fleck On the Automorphism Group of an Automaton , 1965, JACM.