Uniqueness in the Inverse Boundary Value Problem for Piecewise Homogeneous Anisotropic Elasticity

Consider a three dimensional piecewise homogeneous anisotropic elastic medium $\Omega$ which is a bounded domain consisting of a finite number of bounded subdomains $D_\alpha$, with each $D_\alpha$ a homogeneous elastic medium. One typical example is a finite element model with elements with curvilinear interfaces for an anisotropic elastic medium. Assuming the $D_\alpha$ are known and Lipschitz, we are concerned with the uniqueness in the inverse boundary value problem of identifying the anisotropic elasticity tensor on $\Omega$ from a localized Dirichlet-to-Neumann map given on a part of the boundary $\partial D_{\alpha_0}\cap\partial\Omega$ of $\partial\Omega$ for a single $\alpha_0$, where $\partial D_{\alpha_0}$ denotes the boundary of $ D_{\alpha_0}$. If we can connect each $D_\alpha$ to $D_{\alpha_0}$ by a chain of $\{D_{\alpha_i}\}_{i=1}^n$ such that interfaces between adjacent regions contain a curved portion, we obtain global uniqueness for this inverse boundary value problem. If the $D_\alpha$ ...

[1]  Masaki Kashiwara,et al.  Sheaves on Manifolds , 1990 .

[2]  Gen Nakamura,et al.  A FORMULA FOR THE FUNDAMENTAL SOLUTION OF ANISOTROPIC ELASTICITY , 1997 .

[3]  Maarten V. de Hoop,et al.  Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation , 2012, SIAM J. Math. Anal..

[4]  E. Bierstone,et al.  Semianalytic and subanalytic sets , 1988 .

[5]  Elena Beretta,et al.  Uniqueness and Lipschitz stability for the identification of Lam\'e parameters from boundary measurements , 2013, 1303.2443.

[6]  T. C. T. Ting,et al.  Anisotropic Elasticity: Theory and Applications , 1996 .

[7]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[8]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[9]  Kazumi Tanuma,et al.  Stroh Formalism and Rayleigh Waves , 2010 .

[10]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[11]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[12]  Elena Beretta,et al.  Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non-flat interfaces , 2014, 1406.1899.

[13]  Masaru Ikehata,et al.  Reconstruction of inclusion from boundary measurements , 2018, 1803.02937.

[14]  Gen Nakamura,et al.  Layer Stripping for a Transversely Isotropic Elastic Medium , 1999, SIAM J. Appl. Math..

[15]  G. Alessandrini,et al.  Single-logarithmic stability for the Calderón problem with local data , 2012, 1202.5485.

[16]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[17]  M. D. Hoop,et al.  Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities , 2016, 1604.02948.

[18]  Gen Nakamura,et al.  Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map , 2001 .