The Targeted Delivery of Multicomponent Cargos to Cancer Cells via Nanoporous Particle-Supported Lipid Bilayers

[1]  Steven J. Gaik,et al.  DNA translocation through an array of kinked nanopores. , 2010, Nature materials.

[2]  E. Kawata,et al.  Future prospect of RNA interference for cancer therapies. , 2010, Current drug targets.

[3]  G. Zuber,et al.  "HFP" fluorinated cationic lipids for enhanced lipoplex stability and gene delivery. , 2010, Bioconjugate chemistry.

[4]  T. Charitat,et al.  Supported bilayers: Combined specular and diffuse X-ray scattering , 2009, The European physical journal. E, Soft matter.

[5]  C Jeffrey Brinker,et al.  Silica nanoparticle supported lipid bilayers for gene delivery. , 2009, Chemical communications.

[6]  J. Pawitan The possible use of RNA interference in diagnosis and treatment of various diseases , 2009, International journal of clinical practice.

[7]  T. Park,et al.  siRNA delivery systems for cancer treatment. , 2009, Advanced drug delivery reviews.

[8]  K. Lee,et al.  Combination chemotherapy with capecitabine and cisplatin for patients with metastatic hepatocellular carcinoma. , 2009, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[10]  C Jeffrey Brinker,et al.  Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. , 2009, Journal of the American Chemical Society.

[11]  P. Atanassov,et al.  Microparticles with bimodal nanoporosity derived by microemulsion templating. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[12]  Derek Y. Chiang,et al.  Pathogenesis of hepatocellular carcinoma and molecular therapies , 2009, Current opinion in gastroenterology.

[13]  C. Werner,et al.  Charging and structure of zwitterionic supported bilayer lipid membranes studied by streaming current measurements, fluorescence microscopy, and attenuated total reflection Fourier transform infrared spectroscopy , 2009, Biointerphases.

[14]  C. Jeffrey Brinker,et al.  Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. , 2009, Journal of the American Chemical Society.

[15]  Joanne I. Yeh,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[16]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[17]  M. Trepel,et al.  Drug delivery in acute myeloid leukemia , 2008, Expert opinion on drug delivery.

[18]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[19]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[20]  Chin-Tarng Lin,et al.  Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery , 2008, Molecular Cancer Therapeutics.

[21]  Mauro Ferrari,et al.  Nanogeometry: beyond drug delivery. , 2008, Nature nanotechnology.

[22]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[23]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[24]  J. Ju,et al.  Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires. , 2007, Nano letters.

[25]  J. Lieberman,et al.  Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1 , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Torbenson,et al.  EGFR is phosphorylated at Ty845 in hepatocellular carcinoma , 2006, Modern Pathology.

[27]  R. Schubert,et al.  Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient. , 2006, Biochimica et biophysica acta.

[28]  Volker Wagner,et al.  The emerging nanomedicine landscape , 2006, Nature Biotechnology.

[29]  R. Kane,et al.  Statistical pattern matching facilitates the design of polyvalent inhibitors of anthrax and cholera toxins , 2006, Nature Biotechnology.

[30]  Shiroh Futaki,et al.  High Density of Octaarginine Stimulates Macropinocytosis Leading to Efficient Intracellular Trafficking for Gene Expression* , 2006, Journal of Biological Chemistry.

[31]  D. Andelman,et al.  Tension-induced morphological transition in mixed lipid bilayers. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[32]  G. Fragneto,et al.  Structure and fluctuations of a single floating lipid bilayer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[34]  Anil K Sood,et al.  Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. , 2005, Cancer research.

[35]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[37]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[38]  S. Nokes,et al.  Liposome fluidization and melting point depression by pressurized CO2 determined by fluorescence anisotropy. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[39]  C. Brinker,et al.  Neutron reflectivity study of lipid membranes assembled on ordered nanocomposite and nanoporous silica thin films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[40]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[41]  D Guthrie,et al.  Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[43]  Y. Barenholz,et al.  Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. , 2001, Biochimica et biophysica acta.

[44]  P. Swain,et al.  Supported membranes on chemically structured and rough surfaces. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  D. Tzemach,et al.  Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[46]  S. Takeoka,et al.  Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. , 2000, Bioconjugate chemistry.

[47]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[48]  D. Papahadjopoulos,et al.  Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. , 1999, Pharmacological reviews.

[49]  Scott L. Diamond,et al.  Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells , 1999, Nature Biotechnology.

[50]  J. Kopeček,et al.  Chronic exposure to HPMA copolymer-bound adriamycin does not induce multidrug resistance in a human ovarian carcinoma cell line. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[51]  P. Swain,et al.  The Influence of Substrate Structure on Membrane Adhesion , 1999, cond-mat/9905205.

[52]  Yunfeng Lu,et al.  Aerosol-assisted self-assembly of mesostructured spherical nanoparticles , 1999, Nature.

[53]  E. Salje,et al.  Diffuse X-ray scattering in WO3 , 1998 .

[54]  M. Monsigny,et al.  Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. , 1998, Bioconjugate chemistry.

[55]  Bruce Dunn,et al.  Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating , 1997, Nature.

[56]  Roland L. Dunbrack,et al.  The Proton Sponge: a Trick to Enter Cells the Viruses Did Not Exploit , 1997, CHIMIA.

[57]  G. Klintmalm,et al.  Chemosensitization of human hepatocellular carcinoma cells with cyclosporin A in post-liver transplant patient plasma. , 1996, Clinical cancer research : an official journal of the American Association for Cancer Research.

[58]  T. Mayumi,et al.  Application of fusogenic liposomes containing fragment A of diphtheria toxin to cancer therapy. , 1996, British Journal of Cancer.

[59]  R. Lipowsky,et al.  Stacks of Fluid Membranes under Pressure and Tension , 1995 .

[60]  J. R. Chantres,et al.  Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods: study of drug release. , 1993, Biochimica et biophysica acta.

[61]  A. Frankel Immunotoxin therapy of cancer. , 1993, Oncology.

[62]  E. Evans Entropy-driven tension in vesicle membranes and unbinding of adherent vesicles , 1991 .

[63]  Reinhard Lipowsky,et al.  The conformation of membranes , 1991, Nature.

[64]  Helfrich,et al.  Unbinding transition of a biological model membrane. , 1989, Physical review letters.

[65]  F. Callea,et al.  Transferrin receptor expression in human hepatocellular carcinoma: an immunohistochemical study of 34 cases , 1988, Histopathology.

[66]  H. Maeda,et al.  A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. , 1986, Cancer research.

[67]  K. M. Hwang,et al.  Guinea pig line 10 hepatocarcinoma model: characterization of monoclonal antibody and in vivo effect of unconjugated antibody and antibody conjugated to diphtheria toxin A chain. , 1983, Cancer research.

[68]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[69]  M. Yamaizumi,et al.  Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin , 1979, The Journal of cell biology.

[70]  Y. Nishizuka,et al.  Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. , 1968, The Journal of biological chemistry.

[71]  Yun Chen,et al.  Tumor-targeted delivery of siRNA by self-assembled nanoparticles. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[72]  Yang Wei-we A Review on , 2008 .

[73]  J. Robert,et al.  Direct evaluation of intracellular accumulation of free and polymer-bound anthracyclines , 2004, Cancer Chemotherapy and Pharmacology.

[74]  M. Gottesman,et al.  Multidrug resistance in cancer: role of ATP–dependent transporters , 2002, Nature Reviews Cancer.