Algorithm 880: A testing infrastructure for symmetric tridiagonal eigensolvers
暂无分享,去创建一个
James Demmel | Beresford N. Parlett | Osni Marques | Christof Vömel | J. Demmel | B. Parlett | O. Marques | Christof Vömel
[1] Iain S. Duff,et al. The Rutherford-Boeing sparse matrix collection , 1997 .
[2] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[3] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[4] Nicholas J. Higham,et al. Algorithm 694: a collection of test matrices in MATLAB , 1991, TOMS.
[5] B. Parlett,et al. Relatively robust representations of symmetric tridiagonals , 2000 .
[6] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[7] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[8] P. Clement,et al. A Class of Triple-Diagonal Matrices for Test Purposes , 1959 .
[9] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[10] Inderjit S. Dhillon,et al. The design and implementation of the MRRR algorithm , 2006, TOMS.
[11] J. Bunch,et al. Rank-one modification of the symmetric eigenproblem , 1978 .
[12] W. Gragg,et al. The numerically stable reconstruction of Jacobi matrices from spectral data , 1984 .
[13] S. Godunov. Guaranteed Accuracy in Numerical Linear Algebra , 1993 .
[14] Inderjit S. Dhillon,et al. Orthogonal Eigenvectors and Relative Gaps , 2003, SIAM J. Matrix Anal. Appl..
[15] Ilse C. F. Ipsen. Computing an Eigenvector with Inverse Iteration , 1997, SIAM Rev..
[16] Beresford N. Parlett,et al. The Spectrum of a Glued Matrix , 2009, SIAM J. Matrix Anal. Appl..
[17] Iain S. Duff,et al. Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .
[18] Inderjit S. Dhillon,et al. Current inverse iteration software can fail , 1998 .
[19] I. Dhillon. Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector Problem , 1998 .
[20] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[21] Jack J. Dongarra,et al. A Portable Programming Interface for Performance Evaluation on Modern Processors , 2000, Int. J. High Perform. Comput. Appl..
[22] Gene H. Golub,et al. Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.
[23] B. Parlett,et al. Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices , 2004 .
[24] Anna M. Matsekh,et al. The Godunov-inverse iteration: a fast and accurate solution to the symmetric tridiagonal eigenvalue problem , 2002 .
[25] Inderjit S. Dhillon,et al. Application of a New Algorithm for the Symmetric Eigenproblem to Computational Quantum Chemistry , 1997, PPSC.
[26] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[27] Robert Todd Gregory,et al. A collection of matrices for testing computational algorithms , 1969 .
[28] Ansi Ieee,et al. IEEE Standard for Binary Floating Point Arithmetic , 1985 .
[29] Guido D. Salvucci,et al. Ieee standard for binary floating-point arithmetic , 1985 .
[30] Che-Rung Lee,et al. Algorithm 879: EIGENTEST—a test matrix generator for large-scale eigenproblems , 2008, TOMS.
[31] Jack Dongarra,et al. A Test Matrix Collection for Non-Hermitian Eigenvalue Problems , 1997 .
[32] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[33] Michael L. Overton,et al. Numerical Computing with IEEE Floating Point Arithmetic , 2001 .
[34] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[35] Inderjit S. Dhillon,et al. Glued Matrices and the MRRR Algorithm , 2005, SIAM J. Sci. Comput..
[36] E. Jason Riedy,et al. Benefits of IEEE-754 Features in Modern Symmetric Tridiagonal Eigensolvers , 2006, SIAM J. Sci. Comput..
[37] Inderjit S. Dhillon,et al. Fernando's solution to Wilkinson's problem: An application of double factorization , 1997 .
[38] James Demmel,et al. Performance and Accuracy of LAPACK's Symmetric Tridiagonal Eigensolvers , 2008, SIAM J. Sci. Comput..
[39] Per Christian Hansen,et al. Test Matrices for Regularization Methods , 1995, SIAM J. Sci. Comput..
[40] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[41] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[42] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[43] David E. Bernholdt,et al. High performance computational chemistry: An overview of NWChem a distributed parallel application , 2000 .
[44] W. Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND ( NUMERICAL ) LINEAR ALGEBRA — A TRIBUTE TO GENE , 2002 .
[45] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[46] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[47] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .