The Subretinal Implant: Can Microphotodiode Arrays Replace Degenerated Retinal Photoreceptors to Restore Vision?

Seeing is a complex of information processing, of which we are normally not aware, starting with the formation of a real, reduced and up-side-down image on the back of the eye accomplished by the eye’s cornea and lens. About 130 million photoreceptors (PR) in the outermost layer of the transparent retina transform local luminance and color patterns into chemical and electrical signals which trigger activity of the many different retinal cells: horizontal cells, bipolar cells, amacrine cells and ganglion cells (GCs). The information is processed by serial and parallel pathways by in parts still unknown mechanisms. The information of these 130 million PRs is compressed to the level of approximately 1.2 million highly specialized GC fibers. These 1.2 million fibers in the retina then

[1]  Knighton Rw,et al.  An electrically evoked slow potential of the frog's retina. I. Properties of response. , 1975 .

[2]  A. Kaneko,et al.  Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation , 1983, The Journal of general physiology.

[3]  R. Knighton,et al.  An electrically evoked slow potential of the frog's retina. I. Properties of response. , 1975, Journal of neurophysiology.

[4]  M. Seeliger,et al.  Spatial cone activity distribution in diseases of the posterior pole determined by multifocal electroretinography , 1998, Vision Research.

[5]  M A Bearse,et al.  Imaging localized retinal dysfunction with the multifocal electroretinogram. , 1996, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[7]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[8]  R W Knighton An electrically evoked slow potential of the frog's retina. II. Identification with PII component of electroretinogram. , 1975, Journal of neurophysiology.

[9]  G. Brindley,et al.  The site of electrical excitation of the human eye , 1955, The Journal of physiology.

[10]  W W Dawson,et al.  The electrical stimulation of the retina by indwelling electrodes. , 1977, Investigative ophthalmology & visual science.

[11]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[12]  E. Zrenner,et al.  ANALYSIS OF FIELD POTENTIALS AND SPIKE PATTERNS EVOKED BY LOCAL ELECTRICAL STIMULATION OF THE CHICKEN RETINA , 1999 .

[13]  Malini Narayanan Nadig Development of a silicon retinal implant: cortical evoked potentials following focal stimulation of the rabbit retina with light and electricity , 1999, Clinical Neurophysiology.

[14]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[15]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[16]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[17]  A. Y. Chow,et al.  Subretinal semiconductor microphotodiode array. , 1998, Ophthalmic surgery and lasers.

[18]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[19]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[20]  M. Mladejovsky,et al.  Artificial Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis , 1974, Science.

[21]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[22]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[23]  D. Crapper,et al.  RETINAL EXCITATION AND INHIBITION FROM DIRECT ELECTRICAL STIMULATION. , 1963, Journal of neurophysiology.

[24]  David J. Warren,et al.  Cortical implants for the blind , 1996 .

[25]  Rolf Eckmiller Towards Retina Implants for Improvement of Vision in Humans with Retinitis Pigmentosa - Challenges and First Results 1 , 1995 .

[26]  Joseph F. Rizzo,et al.  Ocular implants for the blind , 1996 .

[27]  E. Zrenner,et al.  Tiermodelle in der Retinitis-pigmentosa-Forschung , 1997 .

[28]  Knighton Rw An electrically evoked slow potential of the frog's retina. II. Identification with PII component of electroretinogram. , 1975 .

[29]  V. Klauss,et al.  [Cause of blindness in Bavaria. Evaluation of a representative sample from blindness compensation records of Upper Bavaria]. , 1992, Klinische Monatsblatter fur Augenheilkunde.

[30]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[31]  U. Egert,et al.  A thin film microelectrode array for monitoring extracellular neuronal activity in vitro. , 1994, Biosensors & bioelectronics.

[32]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[33]  W H Dobelle,et al.  Mapping the representation of the visual field by electrical stimulation of human visual cortex. , 1979, American journal of ophthalmology.

[34]  Bernd Hoefflinger,et al.  Are Subretinal Microphotodiodes Suitable as a Replacement For Degenerated Photoreceptors , 1999 .