A Thermally Robust La3Si6N11:Ce‐in‐Glass Film for High‐Brightness Blue‐Laser‐Driven Solid State Lighting

[1]  S. Denbaars,et al.  High luminous flux from single crystal phosphor-converted laser-based white lighting system. , 2016, Optics express.

[2]  Angela S. Wochnik,et al.  Narrow-band red-emitting Sr[LiAl₃N₄]:Eu²⁺ as a next-generation LED-phosphor material. , 2014, Nature materials.

[3]  T. Uchikoshi,et al.  Optical properties of solid-state laser lighting devices using SiAlON phosphor–glass composite films as wavelength converters , 2016 .

[4]  Sunghoon Lee,et al.  High power and temperature luminescence of Y3Al5O12:Ce3+ bulky and pulverized single crystal phosphors by a floating-zone method , 2015 .

[5]  Takashi Takeda,et al.  Unique Color Converter Architecture Enabling Phosphor-in-Glass (PiG) Films Suitable for High-Power and High-Luminance Laser-Driven White Lighting. , 2018, ACS applied materials & interfaces.

[6]  R. Xie,et al.  Synthesis and photoluminescent properties of (La,Ca)₃Si₆N₁₁:Ce³+ fine powder phosphors for solid-state lighting. , 2011, ACS applied materials & interfaces.

[7]  Y. Sakka,et al.  Prevention of thermal- and moisture-induced degradation of the photoluminescence properties of the Sr2Si5N8:Eu(2+) red phosphor by thermal post-treatment in N2-H2. , 2016, Physical chemistry chemical physics : PCCP.

[8]  Takashi Takeda,et al.  New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting , 2017 .

[9]  Yi Zheng,et al.  Laser-activated remote phosphor conversion with ceramic phosphors , 2014, Optics & Photonics - Optical Engineering + Applications.

[10]  C. Yeh,et al.  Origin of thermal degradation of Sr(2-x)Si5N8:Eu(x) phosphors in air for light-emitting diodes. , 2012, Journal of the American Chemical Society.

[11]  Shuji Nakamura,et al.  Monolithic translucent BaMgAl10O17:Eu2+ phosphors for laser-driven solid state lighting , 2016 .

[12]  T. Nishimura,et al.  Al2O3–YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting , 2016 .

[13]  Hui Li,et al.  Investigation of an LuAG:Ce translucent ceramic synthesized via spark plasma sintering: Towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting , 2018 .

[14]  A. Mikhailovsky,et al.  Average and local structural origins of the optical properties of the nitride phosphor La(3-x)Ce(x)Si6N11 (0 < x ≤ 3). , 2013, Inorganic chemistry.

[15]  Jiangxu Li,et al.  Low Etendue Yellow-Green Solid-State Light Generation by Laser-Pumped LuAG:Ce Ceramic , 2018, IEEE Photonics Technology Letters.

[16]  T. Sekiguchi,et al.  Moisture-induced degradation and its mechanism of (Sr,Ca)AlSiN3:Eu2+, a red-color-converter for solid state lighting , 2015 .

[17]  E. Fred Schubert,et al.  Origin of efficiency droop in GaN-based light-emitting diodes , 2007 .

[18]  Xuyuan Chen,et al.  Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies , 2018 .

[19]  Daqin Chen,et al.  A new‐generation color converter for high‐power white LED: transparent Ce3+:YAG phosphor‐in‐glass , 2014 .

[20]  T. Nishimura,et al.  CaAlSiN3:Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting , 2016 .

[21]  Jongsu Kim,et al.  Phosphor–Aluminum Composite for Energy Recycling with High‐Power White Lighting , 2017 .

[22]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[23]  W. Zhuang,et al.  Identifying the Emission Centers and Probing the Mechanism for Highly Efficient and Thermally Stable Luminescence in the La3Si6N11:Ce3+ Phosphor , 2018 .

[24]  R. F. Karlicek,et al.  Toward Smart and Ultra‐efficient Solid‐State Lighting , 2014 .

[25]  R. Xie,et al.  A robust red-emitting phosphor-in-glass (PiG) for use in white lighting sources pumped by blue laser diodes , 2017 .

[26]  Naoto Hirosaki,et al.  β-Sialon:Eu phosphor-in-glass: a robust green color converter for high power blue laser lighting , 2015 .

[27]  S. Imanaga,et al.  Luminescence Saturation Effects in Y2O2S: Eu Phosphor , 1980 .

[28]  Z. Xia,et al.  Moisture-induced degradation of the narrow-band red-emitting SrLiAl3N4:Eu2+ phosphor , 2017 .

[29]  Gaudenzio Meneghesso,et al.  Laser-Based Lighting: Experimental Analysis and Perspectives , 2017, Materials.

[30]  R. Xie,et al.  Composition-dependent thermal degradation of red-emitting (Ca1−xSrx)AlSiN3:Eu2+ phosphors for high color rendering white LEDs , 2018 .

[31]  R. Xie,et al.  Down-Conversion Nitride Materials for Solid State Lighting: Recent Advances and Perspectives. , 2018, Chemical reviews.

[32]  Taylor D. Sparks,et al.  Stable, Heat-Conducting Phosphor Composites for High-Power Laser Lighting. , 2018, ACS applied materials & interfaces.

[33]  W. Xiang,et al.  Facile synthesis of a thermally stable Ce3+:Y3Al5O12 phosphor-in-glass for white LEDs , 2015 .

[34]  Dae Ho Yoon,et al.  High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting , 2016, Scientific Reports.

[35]  Yingliang Liu,et al.  Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs , 2018 .

[36]  S. Zhuang,et al.  High brightness laser-driven white emitter for Etendue-limited applications. , 2017, Applied optics.

[37]  E. Penilla,et al.  Broadband white light emission from Ce:AlN ceramics: High thermal conductivity down-converters for LED and laser-driven solid state lighting , 2016 .

[38]  Song Hu,et al.  Pore-existing Lu 3 Al 5 O 12 :Ce ceramic phosphor: An efficient green color converter for laser light source , 2018 .

[39]  W. Zhuang,et al.  Synthesis, structure and luminescent properties of yellow phosphor La3Si6N11:Ce3+ for high power white-LEDs☆ , 2017 .

[40]  Ashish Tandon,et al.  Progress in high‐luminance LED technology for solid‐state lighting , 2017 .

[41]  Qian Zhang,et al.  Erosion mechanism of YAG:Ce3+ phosphor in bismuth borate glasses , 2017 .

[42]  Ole Bjarlin Jensen,et al.  Investigation of Saturation Effects in Ceramic Phosphors for Laser Lighting , 2017, Materials.

[43]  S. Or,et al.  Structural evolutions and significantly reduced thermal degradation of red-emitting Sr2Si5N8:Eu2+via carbon doping , 2017 .

[44]  Young-Moon Yu,et al.  Strong thermal stability of Lu 3 Al 5 O 12 :Ce 3+ single crystal phosphor for laser lighting , 2017 .

[45]  James S. Speck,et al.  Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN , 2015 .

[46]  Bin Xie,et al.  An optical-thermal model for laser-excited remote phosphor with thermal quenching , 2018 .

[47]  A. Meijerink,et al.  Temperature Quenching of Yellow Ce3+ Luminescence in YAG:Ce , 2009 .

[48]  D. Yoon,et al.  Design of laser-driven high-efficiency Al2O3/YAG:Ce3+ ceramic converter for automotive lighting: Fabrication, luminous emittance, and tunable color space , 2017 .

[49]  W. Chow,et al.  Analysis of lasers as a solution to efficiency droop in solid-state lighting , 2015 .

[50]  Q. Su,et al.  All-Inorganic Light Convertor Based on Phosphor-in-Glass Engineering for Next-Generation Modular High-Brightness White LEDs/LDs , 2017 .

[51]  Y. Sugahara,et al.  Ce:(Y 1 − x ?> Lu x ?> ) 3 ?> Al 5 ?> O 12 ?> single-crystal phosphor plates for high-brightness white LEDs/LDs with high-color rendering (Ra > 90) and temperature stability , 2014 .

[52]  Jian Xu,et al.  Design of laser-driven SiO 2 -YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting , 2018 .

[53]  W. Im,et al.  Review—Phosphor Plates for High-Power LED Applications: Challenges and Opportunities toward Perfect Lighting , 2018 .

[54]  Y. Sakka,et al.  Reduced thermal degradation of the red-emitting Sr2Si5N8:Eu2+ phosphor via thermal treatment in nitrogen , 2015 .

[55]  Yi Zheng,et al.  Radiance limits of ceramic phosphors under high excitation fluxes , 2013, Optics & Photonics - Optical Engineering + Applications.