Ultraconvergence of ZZ patch recovery at mesh symmetry points

Summary.The ultraconvergence property of the Zienkiewicz-Zhu gradient patch recovery technique based on local discrete least-squares fitting is established for a large class of even-order finite elements. The result is valid at all rectangular mesh symmetry points. Different smoothing strategies are discussed and numerical examples are demonstrated.

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[3]  Begnaud Francis Hildebrand,et al.  Introduction to numerical analysis: 2nd edition , 1987 .

[4]  A. H. Schatz,et al.  Interior estimates for Ritz-Galerkin methods , 1974 .

[5]  Jing Zhang,et al.  Interpolation error estimates of a modified 8-node serendipity finite element , 2000, Numerische Mathematik.

[6]  Zhimin Zhang Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..

[7]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[8]  J. Tinsley Oden,et al.  A Posteriori Error Estimation , 2002 .

[9]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[10]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[11]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[14]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[16]  I. Babuska,et al.  The finite element method and its reliability , 2001 .