The kth prime is greater than k(ln k + ln ln k - 1) for k >= 2
暂无分享,去创建一个
[1] J. Rosser,et al. Approximate formulas for some functions of prime numbers , 1962 .
[2] Barkley Rosser,et al. The n-th Prime is Greater than nlogn , 1939 .
[3] J. Barkley Rosser,et al. Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .
[4] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip , 1979 .
[5] te Herman Riele,et al. Corrigenda: “On the zeros of the Riemann zeta function in the critical strip. II” [Math. Comp. 39 (1982), no. 160, 681–688; MR0669660 (83m:10067)] by R. P. Brent, J. van de Lune, te Riele and D. T. Winter , 1986 .
[6] J RieleteH.J.,et al. On the zeros of the Riemann zeta function in the critical strip III , 1983 .
[7] Jean-Pierre Massias,et al. Bornes effectives pour certaines fonctions concernant les nombres premiers , 1996 .
[8] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip III , 1985 .
[9] G. Robin. Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n , 1983 .
[10] B. Rosser. Explicit Bounds for Some Functions of Prime Numbers , 1941 .