Analysis of the structure of naturally processed peptides bound by class I and class II major histocompatibility complex molecules.

[1]  M F del Guercio,et al.  Definition of a DQ3.1-specific binding motif. , 1994, Journal of immunology.

[2]  A Sette,et al.  Definition of specific peptide motifs for four major HLA-A alleles. , 1994, Journal of immunology.

[3]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[4]  A Sette,et al.  Naturally processed peptides longer than nine amino acid residues bind to the class I MHC molecule HLA-A2.1 with high affinity and in different conformations. , 1994, Journal of immunology.

[5]  J. Sacchettini,et al.  The three-dimensional structure of H-2Db at 2.4 Å resolution: Implications for antigen-determinant selection , 1994, Cell.

[6]  V. Engelhard,et al.  Structure of peptides associated with class I and class II MHC molecules. , 1994, Annual review of immunology.

[7]  V. Gnau,et al.  Allele-specific peptide ligand motifs of HLA-C molecules. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  E. Padlan,et al.  H-2Dd exploits a four residue peptide binding motif , 1993, The Journal of experimental medicine.

[9]  D. Wiley,et al.  The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2 , 1993, Cell.

[10]  R. Henderson,et al.  Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. , 1993, Journal of immunology.

[11]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[12]  William Arbuthnot Sir Lane,et al.  Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles , 1993, The Journal of experimental medicine.

[13]  R. Germain,et al.  Peptide binding inhibits protein aggregation of invariant-chain free class II dimers and promotes surface expression of occupied molecules , 1993, Nature.

[14]  P. A. Peterson,et al.  Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. , 1994, Science.

[15]  E. Padlan,et al.  Endogenous peptides of a soluble major histocompatibility complex class I molecule, H-2Lds: sequence motif, quantitative binding, and molecular modeling of the complex , 1992, The Journal of experimental medicine.

[16]  Don C. Wiley,et al.  Atomic structure of a human MHC molecule presenting an influenza virus peptide , 1992, Nature.

[17]  William S. Lane,et al.  Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle , 1992, Nature.

[18]  F. Sinigaglia,et al.  Identification of a motif for HLA-DR1 binding peptides using M13 display libraries , 1992, The Journal of experimental medicine.

[19]  Dean R. Madden,et al.  The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC , 1992, Cell.

[20]  J. Sacchettini,et al.  Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[21]  William S. Lane,et al.  Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size , 1992, Nature.

[22]  A Sette,et al.  Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad. , 1992, Science.

[23]  R. Cooks,et al.  Quadrupole ion trap mass spectrometry: Current applications and future directions for peptide analysis , 1992 .

[24]  R. Henderson,et al.  Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. , 1992, Science.

[25]  D. Wiley,et al.  The human class II MHC protein HLA-DR1 assembles as empty αβ heterodimers in the absence of antigenic peptide , 1992, Cell.

[26]  A. Rudensky,et al.  Sequence analysis of peptides bound to MHC class II molecules , 1991, Nature.

[27]  D. R. Madden,et al.  Identification of self peptides bound to purified HLA-B27 , 1991, Nature.

[28]  D. R. Madden,et al.  The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation , 1991, Nature.

[29]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[30]  D. Wiley,et al.  Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. , 1991, Journal of molecular biology.

[31]  Hans-Georg Rammensee,et al.  Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells , 1990, Nature.

[32]  H. Grey,et al.  The minimal number of class II MHC-antigen complexes needed for T cell activation. , 1990, Science.

[33]  Emil R. Unanue,et al.  Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation , 1990, Nature.

[34]  P. Cresswell,et al.  High-affinity binding of an influenza hemagglutinin-derived peptide to purified HLA-DR. , 1990, Journal of immunology.

[35]  M. A. Saper,et al.  Specificity pockets for the side chains of peptide antigens in HLA-Aw68 , 1990, Nature.

[36]  A. Townsend,et al.  Antigen recognition by class I-restricted T lymphocytes. , 1989, Annual review of immunology.

[37]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[38]  J. Freed,et al.  Interaction between a "processed" ovalbumin peptide and Ia molecules. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. McMichael,et al.  The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides , 1986, Cell.

[40]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[41]  E A Padlan Structural implications of sequence variability in immunoglobulins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.