Genetic Mutations Affecting Murine Cerebellar Structure and Function

Single gene mutations that affect central nervous system (CNS) structure and, in turn, behavior offer the clearest example of the involvement of genes in the development and function of the brain.

[1]  M. Botez,et al.  Spontaneous alternation and habituation in a T-maze in nervous mutant mice return to news gothic. , 1986 .

[2]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[3]  D. Goldowitz,et al.  Performance of normal and neurological mutant mice on radial arm maze and active avoidance tasks. , 1986, Behavioral and neural biology.

[4]  Lloyd Guth,et al.  Studies on vertebrate neurogenesis , 1960 .

[5]  R. Snider,et al.  Cerebellar contributions to the papez circuit , 1976, Journal of neuroscience research.

[6]  L. Eisenman,et al.  Olivocerebellar fiber maturation in normal and lurcher mutant mice: Defective development in lurcher , 1990, The Journal of comparative neurology.

[7]  N. Miller,et al.  Evidence for higher functions of the cerebellum: eating and grooming elicited by cerebellar stimulation in cats. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Welsh,et al.  Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  R. J. Mullen,et al.  The development and degeneration of Purkinje cells in pcd mutant mice , 1978, The Journal of comparative neurology.

[10]  M. Buchsbaum,et al.  Positron emission tomography of the cerebellum in autism. , 1989, The American journal of psychiatry.

[11]  Doris B. Wilson,et al.  Cerebellar histogenesis in the lurcher (Lc) mutant mouse , 1977, The Journal of comparative neurology.

[12]  C. Sotelo Mutant mice and the formation of cerebellar circuitry , 1980, Trends in Neurosciences.

[13]  R. Sidman,et al.  An autoradiographic analysis of histogenesis in the mouse cerebellum. , 1961, Experimental neurology.

[14]  J. Altman,et al.  Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons , 1985, The Journal of comparative neurology.

[15]  Y. Lamarre,et al.  Spontaneous alternation and habituation in lurcher mutant mice , 1986, Brain Research.

[16]  S. Landis,et al.  Several mutations in mice that affect the cerebellum. , 1978, Advances in neurology.

[17]  J. Altman,et al.  Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer , 1972, The Journal of comparative neurology.

[18]  K. Caddy,et al.  Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. , 1979, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  M. Ross,et al.  Meander tail reveals a discrete developmental unit in the mouse cerebellum. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Rockstroh,et al.  The cerebellum contributes to mental skills. , 1989 .

[21]  P. Rakić,et al.  Neuron‐glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electonmicroscopic study in Macacus rhesus , 1971, The Journal of comparative neurology.

[22]  Kaoru Inoue,et al.  Observations on the cerebellum of normal‐reeler mutant mouse chimera , 1986, The Journal of comparative neurology.

[23]  G. Blatt,et al.  A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice , 1985, The Journal of comparative neurology.

[24]  M. Berry,et al.  Derivation of cerebellar golgi neurons from the external granular layer: Evidence from explantation of external granule cells in vivo , 1985, The Journal of comparative neurology.

[25]  Professor Dr. John C. Eccles,et al.  The Cerebellum as a Neuronal Machine , 1967, Springer Berlin Heidelberg.

[26]  P. Evrard,et al.  Glial-neuronal relationship in the developing central nervous system. A histochemical-electron microscope study of radial glial cell particulate glycogen in normal and reeler mice and the human fetus. , 1985, Developmental neuroscience.

[27]  S. Kuperman,et al.  Cerebellar structure in autism. , 1987, American journal of diseases of children.

[28]  M. Ito,et al.  The modifiable neuronal network of the cerebellum. , 1984, The Japanese journal of physiology.

[29]  W. Wille,et al.  Changes in Particulate Neuraminidase Activity During Normal and Staggerer Mutant Mouse Development , 1981, Journal of neurochemistry.

[30]  F. D. Carlson Physiological and Biochemical Aspects of Nervous Integration , 1968 .

[31]  G. Berntson,et al.  Cerebellar stimulation in the rat: complex stimulation-bound oral behaviors and self-stimulation. , 1974, Physiology & behavior.

[32]  G. A. Clark,et al.  Initial localization of the memory trace for a basic form of learning. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Robert Lalonde Delayed spontaneous alternation in weaver mutant mice , 1986, Brain Research.

[34]  R. Sidman,et al.  Purkinje cells and granule cells in the cerebellum of the Stumbler mutant mouse. , 1981, Brain research.

[35]  R. N. Leaton,et al.  Cerebellar vermis: essential for classically conditioned bradycardia in the rat , 1990, Brain Research.

[36]  R. J. Mullen,et al.  Purkinje cell degeneration, a new neurological mutation in the mouse. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Sotelo,et al.  Hyperspiny Purkinje cell, a new neurological mutation in the mouse. , 1983, The Journal of heredity.

[38]  C. Sotelo Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse , 1975, Brain Research.

[39]  A. Tarkowski,et al.  Mouse Chimæras Developed from Fused Eggs , 1961, Nature.

[40]  K. Herrup,et al.  Direct correlation between Purkinje and granule cell number in the cerebella of lurcher chimeras and wild-type mice. , 1983, Brain research.

[41]  M E Hallonet,et al.  A new approach to the development of the cerebellum provided by the quail-chick marker system. , 1990, Development.

[42]  C. Goodlett,et al.  Regional differences in the timing of dendritic outgrowth of Purkinje cells in the vermal cerebellum demonstrated by MAP2 immunocytochemistry. , 1990, Brain research. Developmental brain research.

[43]  B. Ghetti,et al.  Dopamine deficiency in the weaver mutant mouse , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  B. Mintz,et al.  FORMATION OF GENETICALLY MOSAIC MOUSE EMBRYOS, AND EARLY DEVELOPMENT OF "LETHAL (T12/T12)-NORMAL" MOSAICS. , 1964, The Journal of experimental zoology.

[45]  C. Sotelo,et al.  Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: A model to study presynaptic stabilization , 1979, Brain Research.

[46]  K. Herrup,et al.  Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimeric mice. II. Granule cell death , 1982, Brain Research.

[47]  V. Caviness,et al.  Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. , 1982, Brain research.

[48]  J. Desclin Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. , 1974, Brain research.

[49]  W. T. Thach,et al.  Purkinje cell activity during motor learning , 1977, Brain Research.

[50]  E. Trenkner Postnatal cerebellar cells of staggerer mutant mice express immature components on their surface , 1979, Nature.

[51]  K. Herrup,et al.  Cerebellar cell degeneration in the leaner mutant mouse , 1982, Neuroscience.

[52]  J. Changeux,et al.  Transsynaptic degeneration 'en cascade' in the cerebellar cortex of staggerer mutant mice. , 1974, Brain research.

[53]  C. H. Yoon Pleiotropic effect of the staggerer gene , 1976, Brain Research.

[54]  A. Graybiel,et al.  Expression of the weaver gene in dopamine-containing neural systems is dose-dependent and affects both striatal and nonstriatal regions , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  A. Harding The hereditary ataxias and related disorders , 1984 .

[56]  K. Herrup,et al.  Numerical matching between granule and Purkinje cells in lurcher chimeric mice: a hypothesis for the trophic rescue of granule cells from target-related cell death , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  J. Bloedel,et al.  Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit , 1990, Behavioural Brain Research.

[58]  Robert Lalonde,et al.  Spontaneous alternation and exploration in weaver mutant mice , 1988, Behavioural Brain Research.

[59]  K. Herrup,et al.  Role of staggerer gene in determining cell number in cerebellar cortex. II. Granule cell death and persistence of the external granule cell layer in young mouse chimeras. , 1984, Brain research.

[60]  R. J. Mullen,et al.  Staggerer chimeras: Intrinsic nature of purkinje cell defects and implications for normal cerebellar development , 1979, Brain Research.

[61]  P. Rakic Synaptic specificity in the cerebellar cortex: study of anomalous circuits induced by single gene mutations in mice. , 1976, Cold Spring Harbor symposia on quantitative biology.

[62]  D. Goldowitz The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: Evidence from homozygous weaver chimeras , 1989, Neuron.

[63]  J W Murakami,et al.  Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. , 1989, Archives of neurology.

[64]  R. J. Mullen,et al.  Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  K. Herrup,et al.  Interaction of granule, Purkinje and inferior olivary neurons in lurcher chimaeric mice. I. Qualitative studies. , 1982, Journal of embryology and experimental morphology.

[66]  L. Eisenman,et al.  Purkinje cell reduction in the reeler mutant mouse: A quantitative immunohistochemical study , 1989, The Journal of comparative neurology.

[67]  M. Botez,et al.  Spontaneous alternation and habituation in a t-maze in nervous mutant mice. , 1986, Behavioral neuroscience.

[68]  J. Altman,et al.  Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells , 1985, The Journal of comparative neurology.

[69]  P. Rakić,et al.  Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice , 1973, The Journal of comparative neurology.

[70]  Kinuko Suzuki,et al.  Abnormalities of Purkinje Cell Arborization in Brindled Mouse Cerebellum: A Golgi Study , 1985, Journal of neuropathology and experimental neurology.

[71]  S. Oda A new allele of the tottering locus, rolling mouse Nagoya, on chromosome no. 8 in the mouse , 1981 .

[72]  W. Greenough,et al.  Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Snider Cerebellar pathology in schizophrenia—Cause or consequence? , 1982, Neuroscience & Biobehavioral Reviews.

[74]  R. F. Thompson,et al.  Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  J. Changeux,et al.  Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[76]  D A Robinson,et al.  The windfalls of technology in the oculomotor system. Proctor lecture. , 1987, Investigative ophthalmology & visual science.

[77]  Masao Ito The Cerebellum And Neural Control , 1984 .

[78]  S G Lisberger,et al.  The neural basis for learning of simple motor skills. , 1988, Science.

[79]  P. Rakić,et al.  Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice , 1973, The Journal of comparative neurology.

[80]  P. Rakić,et al.  Mechanisms of cortical development: a view from mutations in mice. , 1978, Annual review of neuroscience.

[81]  C. Sotelo,et al.  Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. , 1987, Developmental biology.

[82]  R. J. Mullen Site of pcd gene action and Purkinje cell mosaicism in cerebella of chimaeric mice , 1977, Nature.

[83]  G. Holmes THE CEREBELLUM OF MAN , 1939 .

[84]  K. Mikoshiba,et al.  Mosaic Expression of the Reeler and Normal Phenotypes in the Cerebral Cortex in Reeler‐Normal Chimeras at a Late Embryonic Stage , 1985, Development, growth & differentiation.

[85]  Stumbler, a new mutant mouse with cerebellar disease , 1981, Brain Research.

[86]  J. Mariani Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. , 1982, Journal of neurobiology.

[87]  A. Goffinet Events governing organization of postmigratory neurons: Studies on brain development in normal and reeler mice , 1984, Brain Research Reviews.

[88]  K. Herrup,et al.  Regional differences in cytoarchitecture of the weaver cerebellum suggest a new model for weaver gene action , 1987, Neuroscience.

[89]  A. Messer,et al.  Persistence of cerebellar thymidine kinase in staggerer and hypothyroid mutants. , 1984, Journal of neurogenetics.

[90]  Richard J Smeyne,et al.  Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: evidence from chimeric mice. , 1990, Brain research. Developmental brain research.

[91]  R. J. Mullen Analysis of CNS Development with Mutant Mice and Chimeras , 1982 .

[92]  M. Hatten,et al.  Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[93]  R. Ivry,et al.  The role of cerebellar structures in the execution of serial movements. , 1989, Brain : a journal of neurology.

[94]  G. Berntson,et al.  The paleocerebellum and the integration of behavioral function , 1982 .

[95]  K. Herrup,et al.  Role of staggerer gene in determining cell number in cerebellar cortex. I. Granule cell death is an indirect consequence of staggerer gene action. , 1983, Brain research.

[96]  S. Landis Changes in neuronal mitochondrial shape in brains of nervous mutant mice. , 1973, The Journal of heredity.

[97]  K. Herrup,et al.  Numerical matching in the mammalian CNS: Lack of a competitive advantage of early over late‐generated cerebellar granule cells , 1989, The Journal of comparative neurology.

[98]  S. Martinez,et al.  Rostral Cerebellum Originates from the Caudal Portion of the So‐Called ‘Mesencephalic’ Vesicle: A Study Using Chick/Quail Chimeras , 1989, The European journal of neuroscience.

[99]  Karl Herrup,et al.  Regional variation and absence of large neurons in the cerebellum of the staggerer mouse , 1979, Brain Research.

[100]  C. H. Yoon Developmental mechanism for changes in cerebellum of “staggerer” mouse, a neurological mutant of genetic origin , 1972, Neurology.

[101]  M. Hatten,et al.  Postnatal cerebellar cells from staggerer mutant mice express embryonic cell surface characteristic , 1978, Nature.

[102]  The developmental consequences of abnormal cell position in the reeler mouse , 1980, Trends in Neurosciences.

[103]  F. Crépel,et al.  Multiple innervation of cerebellar Purkinje cells by climbing fibres in staggerer mutant mouse , 1980, Nature.

[104]  C. Yoon,et al.  Abnormal rate of granule cell migration in the cerebellum of "Weaver" mutant mice. , 1972, Developmental biology.

[105]  M. Berry,et al.  Topological link‐vertex analysis of the growth of purkinje cell dendritic trees in normal, reeler, and weaver mice , 1989, The Journal of comparative neurology.

[106]  J. Altman,et al.  Embryonic development of the rat cerebellum. I. Delineation of the cerebellar primordium and early cell movements , 1985, The Journal of comparative neurology.

[107]  E. Courchesne,et al.  Hypoplasia of cerebellar vermal lobules VI and VII in autism. , 1988, The New England journal of medicine.

[108]  D. Reis,et al.  Predatory Attack, Grooming, and Consummatory Behaviors Evoked by Electrical Stimulation of Cat Cerebellar Nuclei , 1973, Science.

[109]  M. West,et al.  Early formation of synapses in the molecular layer of the fetal rat cerebellum , 1976, The Journal of comparative neurology.

[110]  K. Herrup,et al.  Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[111]  J. Eccles,et al.  The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum , 1966, The Journal of physiology.

[112]  R. Sidman,et al.  Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice , 1978, The Journal of comparative neurology.

[113]  E Courchesne,et al.  Abnormal neuroanatomy in a nonretarded person with autism. Unusual findings with magnetic resonance imaging. , 1987, Archives of neurology.

[114]  A. L. Leiner,et al.  Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? , 1989, Behavioral neuroscience.

[115]  H. Grüneberg The pathology of development : a study of inherited skeletal disorders in animals , 1963 .

[116]  R. Snider Neurobiology of cerebellar evolution and development , 1971 .

[117]  M. Ito Cerebellar control of the vestibulo-ocular reflex--around the flocculus hypothesis. , 1982, Annual review of neuroscience.

[118]  Richard J Smeyne,et al.  Development and death of external granular layer cells in the weaver mouse cerebellum: a quantitative study , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  M. Botez,et al.  Spontaneous alternation and habituation in Purkinje cell degeneration mutant mice , 1987, Brain Research.