Credibility-based chance-constrained integer programming models for capital budgeting with fuzzy parameters

In this paper, we discuss a problem of capital budgeting in a fuzzy environment. Two types of models are proposed using credibility to measure confidence level. Since the proposed optimization problems are difficult to solve by traditional methods, a fuzzy simulation-based genetic algorithm is applied. Two numerical experiments demonstrate the effectiveness of the proposed algorithm.

[1]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[2]  R. Y. K. Fung,et al.  Fuzzy expected value modelling approach for determining target values of engineering characteristics in QFD , 2005 .

[3]  Jinwu Gao,et al.  Fuzzy quadratic minimum spanning tree problem , 2005, Appl. Math. Comput..

[4]  Sherif Ali Mohtady Mohamed,et al.  Modelling project investment decisions under uncertainty using possibility theory , 2001 .

[5]  Baoding Liu,et al.  Parallel machine scheduling models with fuzzy processing times , 2004, Inf. Sci..

[6]  H. Weingartner,et al.  Mathematical Programming and the Analysis of Capital Budgeting Problems. , 1964 .

[7]  Jinwu Gao,et al.  Fuzzy multilevel programming with a hybrid intelligent algorithm , 2005 .

[8]  L. S. Ganesh,et al.  An empirical analysis of the use of the Analytic Hierarchy Process for estimating membership values in a fuzzy set , 1996, Fuzzy Sets Syst..

[9]  Baoding Liu,et al.  Chance constrained programming with fuzzy parameters , 1998, Fuzzy Sets Syst..

[10]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[11]  Mitsuo Gen,et al.  Genetic Algorithms , 1999, Wiley Encyclopedia of Computer Science and Engineering.

[12]  Baoding Liu,et al.  Standby redundancy optimization problems with fuzzy lifetimes , 2005, Comput. Ind. Eng..

[13]  Manfred W. Padberg,et al.  Optimal project selection when borrowing and lending rates differ , 1999 .

[14]  William H. Jean Terminal Value or Present Value in Capital Budgeting Programs , 1971 .

[15]  Stewart C. Myers,et al.  A NOTE ON LINEAR PROGRAMMING AND CAPITAL BUDGETING , 1972 .

[16]  Arthur J. Keown,et al.  A Chance-Constrained Integer Goal Programming Model for Capital Budgeting in the Production Area , 1980 .

[17]  Booding Liu,et al.  Minimax Chance Constrained Programming Models for Fuzzy Decision Systems , 1998, Inf. Sci..

[18]  Baoding Liu,et al.  Renewal Process with Fuzzy Interarrival Times and Rewards , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[20]  L. J. Savage,et al.  Three Problems in Rationing Capital , 1955 .

[21]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[22]  Chih-Hsun Chou,et al.  Model reference adaptive fuzzy control: A linguistic space approach , 1998, Fuzzy Sets Syst..

[23]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[24]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (2nd, extended ed.) , 1994 .

[25]  Evangelos Triantaphyllou,et al.  An evaluation of the eigenvalue approach for determining the membership values in fuzzy sets , 1990 .

[26]  Yian-Kui Liu Fuzzy Programming with Recourse , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[27]  Mitsuo Gen,et al.  Genetic algorithms and engineering optimization , 1999 .

[28]  Richard Y. K. Fung,et al.  A fuzzy expected value-based goal programing model for product planning using quality function deployment , 2005 .

[29]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[30]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[31]  Avishai Ceder,et al.  Transportation projects selection process using fuzzy sets theory , 2000, Fuzzy Sets Syst..

[32]  Kevin Otto,et al.  Constructing membership functions using interpolation and measurement theory , 1995 .

[33]  H. Weingartner Capital Budgeting of Interrelated Projects: Survey and Synthesis , 1966 .

[34]  Baoding Liu,et al.  A genetic algorithm for chance constrained programming , 1996 .

[35]  Arthur J. Keown,et al.  A Chance Constrained Goal Programming Model for Working Capital Management , 1977 .

[36]  Dorota Kuchta,et al.  Fuzzy capital budgeting , 2000, Fuzzy Sets Syst..

[37]  Da Ruan,et al.  Capital budgeting techniques using discounted fuzzy versus probabilistic cash flows , 2002, Inf. Sci..