Low-temperature atomic-layer-deposition lift-off method for microelectronic and nanoelectronic applications

We report a method for depositing patterned dielectric layers with submicron features using atomic layer deposition. The patterned films are superior to sputtered or evaporated films in continuity, smoothness, conformality, and minimum feature size. Films were deposited at 100–150 °C using several different precursors and patterned using either electron-beam or photoresist. The low deposition temperature permits uniform film growth without significant outgassing or hardbaking of resist layers. A lift-off technique presented here gives sharp step edges with edge roughness as low as ∼10 nm. We also measure dielectric constants (κ) and breakdown fields for the high-κ materials aluminum oxide (κ∼8–9), hafnium oxide (κ∼16–19), and zirconium oxide (κ∼20–29), grown under similar low temperature conditions.

[1]  Esther Kim,et al.  A Kinetic Model for Step Coverage by Atomic Layer Deposition in Narrow Holes or Trenches , 2003 .

[2]  Roy G. Gordon,et al.  Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films , 2003 .

[3]  Steven M. George,et al.  Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques , 2003 .

[4]  Esther Kim,et al.  Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors , 2002 .

[5]  K. Roberts,et al.  Thesis , 2002 .

[6]  M. Ritala,et al.  In Situ Quartz Crystal Microbalance and Quadrupole Mass Spectrometry Studies of Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum and Water , 2001 .

[7]  R. Gordon,et al.  Vapor Deposition of Metal Oxides and Silicates: Possible Gate Insulators for Future Microelectronics , 2001 .

[8]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[9]  Mikko Ritala,et al.  Effect of water dose on the atomic layer deposition rate of oxide thin films , 2000 .

[10]  K. Onishi,et al.  Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric , 2000, IEEE Electron Device Letters.

[11]  M. Ritala,et al.  ALD precursor chemistry : Evolution and future challenges , 1999 .

[12]  Steven M. George,et al.  Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry , 1997 .

[13]  J. Mugnier,et al.  Waveguide Raman Spectroscopy Used for Structural Investigations of ZrO2Sol–Gel Waveguiding Layers , 1996 .

[14]  P. Balk Dielectrics in microelectronics — problems and perspectives , 1995 .

[15]  S. Alperine,et al.  Yttria-stabilized hafnia-zirconia thermal barrier coatings: The influence of hafnia addition on TBC structure and high-temperature behaviour , 1995 .

[16]  P. Carr,et al.  Chemistry of zirconia and its use in chromatography. , 1993, Journal of chromatography. A.

[17]  J. Dobrowolski,et al.  Optical coatings deposited by reactive ion plating. , 1993, Applied optics.

[18]  John Wang,et al.  Hafnia and hafnia-toughened ceramics , 1992, Journal of Materials Science.

[19]  Y. Iwasawa,et al.  Selective isopentane formation from CH3OH on a new one-atomic layer ZrO2/ZSM-5 hybrid catalyst , 1988 .

[20]  P. Griffin,et al.  Gate stack and silicide issues in silicon processing II : symposium held April 17-19, 2001, San Francisco, California, U.S.A. , 2002 .

[21]  M. Quirk,et al.  Semiconductor manufacturing technology , 2000 .

[22]  K. Kukli,et al.  Properties of Ta2 O 5‐Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy , 1997 .