Power Laws in Economics and Finance

A power law is the form taken by a large number of surprising empirical regularities in economics and finance. This article surveys well-documented empirical power laws concerning income and wealth, the size of cities and firms, stock market returns, trading volume, international trade, and executive pay. It reviews detail-independent theoretical motivations that make sharp predictions concerning the existence and coefficients of power laws, without requiring delicate tuning of model parameters. These theoretical mechanisms include random growth, optimization, and the economics of superstars coupled with extreme value theory. Some of the empirical regularities currently lack an appropriate explanation. This article highlights these open areas for future research.

[1]  Charles Gide,et al.  Cours d'économie politique , 1911 .

[2]  F. Auerbach Das Gesetz der Bevölkerungskonzentration. , 1913 .

[3]  G. Yule,et al.  A Mathematical Theory of Evolution, Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[4]  G. Yule,et al.  A Mathematical Theory of Evolution Based on the Conclusions of Dr. J. C. Willis, F.R.S. , 1925 .

[5]  George Kingsley Zipf,et al.  Human behavior and the principle of least effort , 1949 .

[6]  J. Schumpeter,et al.  Vilfredo Pareto (1848–1923) , 1949 .

[7]  D. Champernowne A Model of Income Distribution , 1953 .

[8]  T. Mann The Black Swan , 1954 .

[9]  H. Simon,et al.  ON A CLASS OF SKEW DISTRIBUTION FUNCTIONS , 1955 .

[10]  David R. Roberts,et al.  A General Theory of Executive Compensation Based on Statistically Tested Propositions , 1956 .

[11]  P. Whittle,et al.  A Model Explaining the Pareto Distribution of Wealth , 1957 .

[12]  B. Mandelbrot STABLE PARETIAN RANDOM FUNCTIONS AND THE MULTIPLICATIVE VARIATION OF INCOME , 1961 .

[13]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[14]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[15]  W. R. Buckland,et al.  Random processes and the growth of firms , 1965 .

[16]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[17]  Andrew Cosh The Remuneration of Chief Executives in the United Kingdom , 1975 .

[18]  L. Engwall Skew distributions and the sizes of business firms , 1976 .

[19]  H. A. Simon,et al.  Skew Distributions and the Size of Business Firms , 1977 .

[20]  W. Vervaat On a stochastic difference equation and a representation of non–negative infinitely divisible random variables , 1979, Advances in Applied Probability.

[21]  S. Rosen The Economics of Superstars , 1981 .

[22]  Glenn R. Carroll,et al.  National city-size distributions , 1982 .

[23]  Kevin J. Murphy,et al.  Compensation and Incentives: Practice vs. Theory , 1988 .

[24]  Dennis W. Jansen,et al.  On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective , 1989 .

[25]  Sherwin Rosen,et al.  Contracts and the Market for Executives , 1990 .

[26]  Peter F. Kostiuk,et al.  Firm Size and Executive Compensation , 1990 .

[27]  Robert J. Barro,et al.  Pay, Performance, and Turnover of Bank CEOs , 1990, Journal of Labor Economics.

[28]  Kevin J. Murphy,et al.  Performance Pay and Top Management Incentives , 1990 .

[29]  C. Goldie IMPLICIT RENEWAL THEORY AND TAILS OF SOLUTIONS OF RANDOM EQUATIONS , 1991 .

[30]  Mark Blaug,et al.  Vilfredo Pareto (1848–1923) , 1992 .

[31]  Joseph Persky,et al.  Retrospectives: Pareto's Law , 1992 .

[32]  J. Scheinkman,et al.  Aggregate Fluctuations from Independent Sectoral Shocks: Self-Organized Criticality in a Model of Production and Inventory Dynamics , 1992 .

[33]  Michael Sattinger,et al.  Assignment Models of the Distribution of Earnings , 1993 .

[34]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[35]  Edward E. Leamer,et al.  International Trade Theory: The Evidence , 1994 .

[36]  John L. Casti,et al.  The Theory of Networks , 1995 .

[37]  R. Mantegna,et al.  Zipf plots and the size distribution of firms , 1995 .

[38]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[39]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[40]  Thomas Lux,et al.  The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks , 1996 .

[41]  M. Levy,et al.  POWER LAWS ARE LOGARITHMIC BOLTZMANN LAWS , 1996, adap-org/9607001.

[42]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[43]  P. Krugman Confronting the Mystery of Urban Hierarchy , 1996 .

[44]  Samuel Kortum,et al.  Research, Patenting, and Technological Change , 1997 .

[45]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[46]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: I Epirical results for company growth , 1997, cond-mat/9702082.

[47]  D. Zanette,et al.  ROLE OF INTERMITTENCY IN URBAN DEVELOPMENT : A MODEL OF LARGE-SCALE CITY FORMATION , 1997 .

[48]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[49]  C. Mulligan Scale Economies, the Value of Time, and the Demand for Money: Longitudinal Evidence from Firms , 1997, Journal of Political Economy.

[50]  M. Marsili,et al.  Interacting Individuals Leading to Zipf's Law , 1998, cond-mat/9801289.

[51]  Sergei Maslov,et al.  Comment on “Role of intermittency in urban development: A model of large-scale city formation” , 1998 .

[52]  Didier Sornette,et al.  Stock market crashes are outliers , 1998 .

[53]  Susanna C. Manrubia,et al.  Intermittency model for urban development , 1998 .

[54]  Sergei Maslov,et al.  Dynamical optimization theory of a diversified portfolio , 1998 .

[55]  D. Turcotte,et al.  Forest fires: An example of self-organized critical behavior , 1998, Science.

[56]  X. Gabaix Zipf's Law and the Growth of Cities , 1999 .

[57]  H. Stanley,et al.  Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena , 1999 .

[58]  Geoffrey B. West,et al.  The origin of universal scaling laws in biology , 1999 .

[59]  X. Gabaix Zipf's Law for Cities: An Explanation , 1999 .

[60]  LAURANCE R. DOYLE,et al.  Quantitative tools for comparing animal communication systems: information theory applied to bottlenose dolphin whistle repertoires , 1999, Animal Behaviour.

[61]  Didier Sornette,et al.  On Rational Bubbles and Fat Tails , 1999, cond-mat/9910141.

[62]  V. Plerou,et al.  Scaling of the distribution of price fluctuations of individual companies. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  S Solomon,et al.  Power-law distributions and Lévy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  H. Takayasu,et al.  Zipf's law in income distribution of companies , 1999 .

[65]  V. Plerou,et al.  Scaling of the distribution of fluctuations of financial market indices. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  P. Cizeau,et al.  Statistical properties of the volatility of price fluctuations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[68]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[69]  Yannis M. Ioannides,et al.  Zipf’s law for cities : an empirical examination , 2000 .

[70]  Gopikrishnan,et al.  Economic fluctuations and anomalous diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  D. Sornette Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools , 2000 .

[72]  Stanley,et al.  Statistical properties of share volume traded in financial markets , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  Sergei Maslov,et al.  Price Fluctuations from the Order Book Perspective - Empirical Facts and a Simple Model , 2001, cond-mat/0102518.

[74]  Sorin Solomon,et al.  Power laws of wealth, market order volumes and market returns , 2001 .

[75]  Jean-Philippe Bouchaud,et al.  Power laws in economics and finance: some ideas from physics , 2001 .

[76]  Steven Brakman,et al.  An Introduction to Geographical Economics , 2001 .

[77]  W. Reed The Pareto, Zipf and other power laws , 2001 .

[78]  V. Yakovenko,et al.  Evidence for the exponential distribution of income in the USA , 2001 .

[79]  Wentian Li,et al.  Zipf's Law everywhere , 2002, Glottometrics.

[80]  Sorin Solomon,et al.  Theoretical analysis and simulations of the generalized Lotka-Volterra model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[81]  Measuring Prices and Price Competition Online: Amazon and Barnes and Noble , 2002 .

[82]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[83]  J. Córdoba,et al.  On the Distribution of City Sizes , 2003 .

[84]  R N Mantegna,et al.  Power-law relaxation in a complex system: Omori law after a financial market crash. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Moshe Levy,et al.  Are rich people smarter? , 1997, J. Econ. Theory.

[86]  Enrico Santarelli,et al.  Gibrat's Law: Are the Services Different? , 2004 .

[87]  Marc J. Melitz The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity , 2003 .

[88]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[89]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[90]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[91]  J. Chevalier,et al.  Measuring Prices and Price Competition Online: Amazon.com and BarnesandNoble.com , 2003 .

[92]  Yannis M. Ioannides,et al.  The Evolution of City Size Distributions , 2004 .

[93]  C. I. Jones,et al.  The Shape of Production Function and the Direction of Technical Change , 2004 .

[94]  Steven Kou,et al.  A Diffusion Model for Growth Stocks , 2004, Math. Oper. Res..

[95]  Eric R. Ziegel,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2004, Technometrics.

[96]  M. Marsili,et al.  Minority Games: Interacting agents in financial markets , 2014 .

[97]  John Sutton,et al.  Market Share Dynamics and the Persistence of Leadership Debate , 2004 .

[98]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[99]  Yoshi Fujiwara,et al.  Do Pareto–Zipf and Gibrat laws hold true? An analysis with European firms , 2004 .

[100]  J. Eaton,et al.  Dissecting Trade: Firms, Industries, and Export Destinations , 2004 .

[101]  K. Soo Zipf's law for cities: a cross-country investigation , 2005 .

[102]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[103]  E. Helpman,et al.  Export Versus FDI with Heterogeneous Firms , 2004 .

[104]  Y. Fujiwara Zipf Law in Firms Bankruptcy , 2003, cond-mat/0310062.

[105]  J. Eeckhout Gibrat's Law for (All) Cities , 2004 .

[106]  H. Stanley,et al.  The growth of business firms: theoretical framework and empirical evidence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Ignatius J. Horstmann,et al.  Export versus FDI with Heterogeneous Firms , 2005 .

[108]  X. Gabaix The Granular Origins of Aggregate Fluctuations , 2009 .

[109]  Michael Biggs Strikes as Forest Fires: Chicago and Paris in the Late Nineteenth Century1 , 2005, American Journal of Sociology.

[110]  Taisei Kaizoji,et al.  A precursor of market crashes: Empirical laws of Japan's internet bubble , 2005, physics/0510055.

[111]  H Eugene Stanley,et al.  Quantifying fluctuations in market liquidity: analysis of the bid-ask spread. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  V. Plerou,et al.  Institutional Investors and Stock Market Volatility , 2005 .

[113]  Moshe Levy,et al.  Market Efficiency, the Pareto Wealth Distribution, and the Lévy Distribution of Stock Returns , 2005 .

[114]  S. Durlauf Complexity and Empirical Economics , 2005 .

[115]  D. Sornette,et al.  Dynamics of book sales: endogenous versus exogenous shocks in complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  J. Hinloopen,et al.  Comparative Advantage, the Rank-Size Rule, and Zipf's Law , 2006 .

[117]  Thomas Mikosch,et al.  Regularly varying functions , 2006 .

[118]  Moshe Levy,et al.  The Forbes 400 and the Pareto wealth distribution , 2006 .

[119]  X. Gabaix,et al.  Why Has CEO Pay Increased so Much? , 2006 .

[120]  Makoto Nirei,et al.  Threshold behavior and aggregate fluctuation , 2006, J. Econ. Theory.

[121]  Mark L. J. Wright,et al.  Establishment Size Dynamics in the Aggregate Economy , 2006 .

[122]  R. Barro Rare Disasters and Asset Markets in the Twentieth Century , 2006 .

[123]  Gilles Duranton,et al.  Some foundations for Zipf's law: Product proliferation and local spillovers , 2006 .

[124]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[125]  Shlomo Havlin,et al.  Relation between volatility correlations in financial markets and Omori processes occurring on all scales. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  Marko Terviö Difference that CEOs Make: An Assignment Model Approach , 2007 .

[127]  J. Benhabib,et al.  The distribution of wealth: Intergenerational transmission and redistributive policies , 2007 .

[128]  A. Lo,et al.  What Happened to the Quants in August 2007? , 2007 .

[129]  M. Weitzman Subjective Expectations and Asset-Return Puzzles , 2007 .

[130]  Anthony B. Atkinson,et al.  Top incomes over the twentieth century: A contrast between continental european and english-speaking countries , 2007 .

[131]  L. Benguigui,et al.  A dynamic model for city size distribution beyond Zipf 's law , 2007 .

[132]  H. Stanley,et al.  On the Size Distribution of Business Firms , 2008 .

[133]  Gilles Duranton,et al.  Urban Evolutions: The Fast, the Slow, and the Still , 2007 .

[134]  X. Gabaix,et al.  Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents , 2007 .

[135]  V. Plerou,et al.  Tests of scaling and universality of the distributions of trade size and share volume: evidence from three distinct markets. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[136]  Erzo G. J. Luttmer Selection, Growth, and the Size Distribution of Firms , 2007 .

[137]  Wataru Souma,et al.  A Two Factor Model of Income Distribution Dynamics , 2007 .

[138]  Costas Arkolakis Market Penetration Costs and Trade Dynamics , 2008 .

[139]  Sergey V. Buldyrev,et al.  The size variance relationship of business firm growth rates , 2008, Proceedings of the National Academy of Sciences.

[140]  Wen-Tai Hsu Central Place Theory and Zipf ’ s , 2008 .

[141]  Jean-Philippe Bouchaud,et al.  Relation between bid–ask spread, impact and volatility in order-driven markets , 2006, physics/0603084.

[142]  J. Bouchaud,et al.  How Markets Slowly Digest Changes in Supply and Demand , 2008, 0809.0822.

[143]  Didier Sornette,et al.  Zipf's Law for Firms: Relevance of Birth and Death Processes , 2008 .

[144]  X. Gabaix Variable Rare Disasters: A Tractable Theory of Ten Puzzles in Macro-finance , 2008 .

[145]  Tomoya Mori,et al.  The Number Average Size Rule: A New Empirical Relationship between Industrial Location and City Size , 2008 .

[146]  Vasco M. Carvalho Aggregate Fluctuations and the Network Structure of Intersectoral Trade , 2010 .

[147]  Thomas Chaney,et al.  Distorted Gravity: The Intensive and Extensive Margins of International Trade , 2008 .

[148]  M. Mew A black swan? , 2009, BDJ.

[149]  Xavier Gabaix,et al.  The Rodney L . White Center for Financial Research A Multiplicative Model of Optimal CEO Incentives in Market Equilibrium , 2008 .

[150]  Dwight M. Jaffee,et al.  Nondiversification Traps in Catastrophe Insurance Markets , 2009 .

[151]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[152]  Matthew O. Jackson,et al.  Networks and Economic Behavior , 2009 .

[153]  Lahomtoires d'Electronique AN INFORMATIONAL THEORY OF THE STATISTICAL STRUCTURE OF LANGUAGE 36 , 2010 .

[154]  P. M. Shearer,et al.  Zipf Distribution of U . S . Firm Sizes , 2022 .