The vortex patch problem for the surface quasi-geostrophic equation.

In this article, the analog of the Euler vortex patch problem for the surface quasi-geostrophic equation is considered.

[1]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[2]  Norbert Schorghofer,et al.  Nonsingular surface quasi-geostrophic flow , 1998, math/9805027.

[3]  Edriss S. Titi,et al.  On the evolution of nearly circular vortex patches , 1988 .

[4]  E. Stein,et al.  Hp spaces of several variables , 1972 .

[5]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[6]  P. Constantin,et al.  Front formation in an active scalar equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[8]  Andrea L. Bertozzi,et al.  Global regularity for vortex patches , 1993 .

[9]  C. Fefferman,et al.  Almost sharp fronts for the surface quasi-geostrophic equation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Charles Fefferman,et al.  Growth of solutions for QG and 2D Euler equations , 2001 .

[11]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[12]  H. Helson Harmonic Analysis , 1983 .

[13]  Andrew J. Majda,et al.  A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow , 1996 .

[14]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[15]  Michio Yamada,et al.  Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow , 1997 .

[16]  Diego Cordoba,et al.  Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.

[17]  Dongho Chae,et al.  The quasi-geostrophic equation in the Triebel–Lizorkin spaces , 2003 .

[18]  Vladimir I. Clue Harmonic analysis , 2004, 2004 IEEE Electro/Information Technology Conference.