the RNAi pathway to misfolded protein turnover

[1]  W. Wood,et al.  Parental effects and phenotypic characterization of mutations that affect early development in Caenorhabditis elegans. , 1980, Developmental biology.

[2]  Tom Misteli,et al.  Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy. , 2004, Methods in enzymology.

[3]  J. McGhee The C. elegans intestine. , 2007, WormBook : the online review of C. elegans biology.

[4]  D. Perlmutter,et al.  Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[5]  N. Grishin,et al.  CREST - a large and diverse superfamily of putative transmembrane hydrolases , 2011, Biology Direct.

[6]  J. E. Melvin,et al.  The NHX Family of Na+-H+ Exchangers in Caenorhabditis elegans * , 2002, The Journal of Biological Chemistry.

[7]  C. Link,et al.  Decreased Insulin-Receptor Signaling Promotes the Autophagic Degradation of β-Amyloid Peptide in C. elegans , 2007, Autophagy.

[8]  D. Lomas,et al.  The mechanism of Z α1-antitrypsin accumulation in the liver , 1993, Nature.

[9]  Xuefan Gu,et al.  SID1 transmembrane family, member 2 (Sidt2): a novel lysosomal membrane protein. , 2010, Biochemical and biophysical research communications.

[10]  Andrew Fire,et al.  The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans , 1999, Cell.

[11]  J. Lazo,et al.  Automated High-Content Live Animal Drug Screening Using C. elegans Expressing the Aggregation Prone Serpin α1-antitrypsin Z , 2010, PloS one.

[12]  R. Kalb,et al.  Daf-2 Signaling Modifies Mutant SOD1 Toxicity in C. elegans , 2012, PloS one.

[13]  D. Perlmutter,et al.  Accumulation of Mutant α1-Antitrypsin Z in the Endoplasmic Reticulum Activates Caspases-4 and -12, NFκB, and BAP31 but Not the Unfolded Protein Response* , 2005, Journal of Biological Chemistry.

[14]  J. Vandesompele,et al.  Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans , 2008, BMC Molecular Biology.

[15]  T. Sveger The Natural History of Liver Disease in (α1‐Antitrypsin Deficient Children , 1988 .

[16]  Jiou Wang,et al.  TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. , 2011, Human molecular genetics.

[17]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[18]  Sandhya P Koushika,et al.  Loss of the Putative RNA-Directed RNA Polymerase RRF-3 Makes C. elegans Hypersensitive to RNAi , 2002, Current Biology.

[19]  James C Whisstock,et al.  Molecular basis of α1‐antitrypsin deficiency revealed by the structure of a domain‐swapped trimer , 2011, EMBO reports.

[20]  S. Lovestone,et al.  Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice , 2009, Biochemical and biophysical research communications.

[21]  Takahiro Kamimoto,et al.  Intracellular Inclusions Containing Mutant α1-Antitrypsin Z Are Propagated in the Absence of Autophagic Activity* , 2006, Journal of Biological Chemistry.

[22]  Cliff,et al.  Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. , 1989, The Journal of clinical investigation.

[23]  P. Sharp,et al.  Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. , 2005, Genes & development.

[24]  D. Rudnick,et al.  CONCISE REVIEW IN MECHANISMS OF DISEASE Alpha-1-Antitrypsin Deficiency: A New Paradigm for Hepatocellular Carcinoma in Genetic Liver Disease , 2005 .

[25]  T Sveger,et al.  Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. , 1976, The New England journal of medicine.

[26]  Simon C Watkins,et al.  An Intracellular Serpin Regulates Necrosis by Inhibiting the Induction and Sequelae of Lysosomal Injury , 2007, Cell.

[27]  Ehud Cohen,et al.  Opposing Activities Protect Against Age-Onset Proteotoxicity , 2006, Science.

[28]  G. Silverman,et al.  A Pro-Cathepsin L Mutant Is a Luminal Substrate for Endoplasmic-Reticulum-Associated Degradation in C. elegans , 2012, PloS one.

[29]  Justin J. Cassidy,et al.  Silencing by small RNAs is linked to endosome trafficking , 2009, Nature Cell Biology.

[30]  N. Seersholm,et al.  α1-Antitrypsin deficiency · 1: Epidemiology of α1-antitrypsin deficiency , 2004, Thorax.

[31]  J. Brodsky,et al.  Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. , 2005, Molecular biology of the cell.

[32]  R. Schleef,et al.  Identification of a Nuclear Targeting Domain in the Insertion between Helices C and D in Protease Inhibitor-10* , 1999, The Journal of Biological Chemistry.

[33]  G. Silverman,et al.  Hepatic fibrosis and carcinogenesis in α1-antitrypsin deficiency: a prototype for chronic tissue damage in gain-of-function disorders. , 2011, Cold Spring Harbor perspectives in biology.

[34]  S. Ōmura,et al.  Degradation of a Mutant Secretory Protein, α1-Antitrypsin Z, in the Endoplasmic Reticulum Requires Proteasome Activity* , 1996, The Journal of Biological Chemistry.

[35]  R. Pego,et al.  Analysis of binding reactions by fluorescence recovery after photobleaching. , 2004, Biophysical journal.

[36]  Craig P. Hunter,et al.  Systemic RNAi in C. elegans Requires the Putative Transmembrane Protein SID-1 , 2002, Science.

[37]  G. Ruvkun,et al.  Regulation of Caenorhabditis elegans RNA interference by the daf-2 insulin stress and longevity signaling pathway. , 2004, Cold Spring Harbor symposia on quantitative biology.

[38]  J. Teckman,et al.  Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. , 2000, American journal of physiology. Gastrointestinal and liver physiology.

[39]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[40]  James G McNally,et al.  FRAP analysis of binding: proper and fitting. , 2005, Trends in cell biology.

[41]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[42]  E. Cohen,et al.  The insulin paradox: aging, proteotoxicity and neurodegeneration , 2008, Nature Reviews Neuroscience.

[43]  Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity , 2009 .

[44]  D. Perlmutter,et al.  Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease-associated protein aggregates. , 2011, Annual review of medicine.

[45]  Pablo Blinder,et al.  Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice , 2009, Cell.

[46]  J. Jeppsson,et al.  Characterization of α1-Antitrypsin in the Inclusion Bodies from the Liver in α1-Antitrypsin Deficiency , 1975 .

[47]  Patrick W. Hullett,et al.  BMC Genomics BioMed Central Methodology article Rapid single nucleotide polymorphism mapping in C. elegans , 2005 .

[48]  R. Plasterk,et al.  Genes Required for Systemic RNA Interference in Caenorhabditis elegans , 2004, Current Biology.

[49]  K. E. Moore,et al.  A lag in intracellular degradation of mutant alpha 1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha 1-antitrypsin deficiency. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Perlmutter Liver injury in alpha1-antitrypsin deficiency: an aggregated protein induces mitochondrial injury. , 2002, The Journal of clinical investigation.

[51]  C. Mello,et al.  piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C. elegans Germline , 2012, Cell.

[52]  D. Hall,et al.  Autophagy Genes Are Essential for Dauer Development and Life-Span Extension in C. elegans , 2003, Science.

[53]  D. Soumpasis Theoretical analysis of fluorescence photobleaching recovery experiments. , 1983, Biophysical journal.

[54]  Richard I. Morimoto,et al.  The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.