Representations of fundamental groups and logarithmic symmetric differential forms

. — In this paper we develop some non-abelian Hodge techniques over complex quasi-projective manifolds X in both archimedean and non-archimedean con-texts. In the non-archimedean case, we first generalize a theorem by Gromov-Schoen: for any Zariski dense representation ρ : π 1 ( X ) → G ( K ) , where G is a semisimple algebraic group defined over some non-archimedean local field K , we construct a ρ equivariant harmonic map from X into the Bruhat-Tits building ∆( G ) of G with some suitable asymptotic behavior. We then construct logarithmic symmetric differential forms over X when the image of such ρ is unbounded. Our main result in the archimedean case is that any semisimple representation σ : π 1 ( X ) → GL N ( C ) is rigid provided that X does not admit logarithmic symmetric differential forms. Fur-thermore, such representation σ is conjugate to σ ′ : π 1 ( X ) → GL N ( O L ) where O L is the ring of integer of some number field L , so that σ ′ is a complex direct factor of a Z -variation of Hodge structures. As an application we prove that a complex quasi-projective manifold X has nonzero global logarithmic symmetric differential forms if there is linear representation π 1 ( X ) → GL N ( C ) with infinite images.

[1]  Ya Deng Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures , 2020, Épijournal de Géométrie Algébrique.

[2]  Ya Deng,et al.  A characterization of complex quasi-projective manifolds uniformized by unit balls , 2020, Mathematische Annalen.

[3]  Georgios Daskalopoulos,et al.  Infinite energy maps and rigidity , 2021, 2112.13961.

[4]  Georgios Daskalopoulos,et al.  Uniqueness of equivariant harmonic maps to symmetric spaces and buildings , 2021, 2111.11422.

[5]  Ya Deng,et al.  Picard hyperbolicity of manifolds admitting nilpotent harmonic bundles , 2021, 2107.07550.

[6]  G. Rousseau Euclidean buildings , 2020 .

[7]  Yohan Brunebarbe Symmetric differentials and variations of Hodge structures , 2018, Journal für die reine und angewandte Mathematik (Crelles Journal).

[8]  C. Simpson,et al.  Rank 3 rigid representations of projective fundamental groups , 2016, Compositio Mathematica.

[9]  H. Esnault,et al.  Cohomologically rigid local systems and integrality , 2017, 1711.06436.

[10]  Yohan Brunebarbe,et al.  Hyperbolicity of varieties supporting a variation of Hodge structure , 2017, 1707.01327.

[11]  B. Klingler Symmetric differentials, Kähler groups and ball quotients , 2013 .

[12]  T. Peternell,et al.  Etale covers of Kawamata log terminal spaces and their smooth loci , 2013, 1302.1655.

[13]  B. Totaro,et al.  Symmetric differentials and the fundamental group , 2012, 1204.6443.

[14]  N. Monod,et al.  Isometry groups of non‐positively curved spaces: structure theory , 2008, 0809.0457.

[15]  B. Rémy,et al.  Géométries à courbure négative ou nulle, groupes discrets et rigidités , 2009 .

[16]  C. Simpson,et al.  On the classification of rank-two representations of quasiprojective fundamental groups , 2007, Compositio Mathematica.

[17]  Philippe Eyssidieux Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe , 2004 .

[18]  T. Mochizuki Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor D-Modules , 2003, math/0312230.

[19]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[20]  R. Schoen,et al.  Global existence theorems for harmonic maps to non-locally compact spaces , 1997 .

[21]  K. Zuo Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π1 of compact Kähler manifolds. , 1996 .

[22]  R. Schoen,et al.  Sobolev spaces and harmonic maps for metric space targets , 1993 .

[23]  R. Schoen,et al.  Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one , 1992 .

[24]  C. Simpson Higgs bundles and local systems , 1992 .

[25]  C. Simpson Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .

[26]  A. Sommese On the rationality of the period mapping , 1978 .

[27]  B. Shiffman On the removal of singularities of analytic sets. , 1968 .