Representations of fundamental groups and logarithmic symmetric differential forms
暂无分享,去创建一个
[1] Ya Deng. Big Picard theorems and algebraic hyperbolicity for varieties admitting a variation of Hodge structures , 2020, Épijournal de Géométrie Algébrique.
[2] Ya Deng,et al. A characterization of complex quasi-projective manifolds uniformized by unit balls , 2020, Mathematische Annalen.
[3] Georgios Daskalopoulos,et al. Infinite energy maps and rigidity , 2021, 2112.13961.
[4] Georgios Daskalopoulos,et al. Uniqueness of equivariant harmonic maps to symmetric spaces and buildings , 2021, 2111.11422.
[5] Ya Deng,et al. Picard hyperbolicity of manifolds admitting nilpotent harmonic bundles , 2021, 2107.07550.
[6] G. Rousseau. Euclidean buildings , 2020 .
[7] Yohan Brunebarbe. Symmetric differentials and variations of Hodge structures , 2018, Journal für die reine und angewandte Mathematik (Crelles Journal).
[8] C. Simpson,et al. Rank 3 rigid representations of projective fundamental groups , 2016, Compositio Mathematica.
[9] H. Esnault,et al. Cohomologically rigid local systems and integrality , 2017, 1711.06436.
[10] Yohan Brunebarbe,et al. Hyperbolicity of varieties supporting a variation of Hodge structure , 2017, 1707.01327.
[11] B. Klingler. Symmetric differentials, Kähler groups and ball quotients , 2013 .
[12] T. Peternell,et al. Etale covers of Kawamata log terminal spaces and their smooth loci , 2013, 1302.1655.
[13] B. Totaro,et al. Symmetric differentials and the fundamental group , 2012, 1204.6443.
[14] N. Monod,et al. Isometry groups of non‐positively curved spaces: structure theory , 2008, 0809.0457.
[15] B. Rémy,et al. Géométries à courbure négative ou nulle, groupes discrets et rigidités , 2009 .
[16] C. Simpson,et al. On the classification of rank-two representations of quasiprojective fundamental groups , 2007, Compositio Mathematica.
[17] Philippe Eyssidieux. Sur la convexité holomorphe des revêtements linéaires réductifs d’une variété projective algébrique complexe , 2004 .
[18] T. Mochizuki. Asymptotic Behaviour of Tame Harmonic Bundles and an Application to Pure Twistor D-Modules , 2003, math/0312230.
[19] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[20] R. Schoen,et al. Global existence theorems for harmonic maps to non-locally compact spaces , 1997 .
[21] K. Zuo. Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of π1 of compact Kähler manifolds. , 1996 .
[22] R. Schoen,et al. Sobolev spaces and harmonic maps for metric space targets , 1993 .
[23] R. Schoen,et al. Harmonic maps into singular spaces andp-adic superrigidity for lattices in groups of rank one , 1992 .
[24] C. Simpson. Higgs bundles and local systems , 1992 .
[25] C. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .
[26] A. Sommese. On the rationality of the period mapping , 1978 .
[27] B. Shiffman. On the removal of singularities of analytic sets. , 1968 .