Novel approach for accessible visual resources in a Web based learning environment

For promoting accessibility in a Web based learning environment, ISO and IEC developed the International Standard ISO/IEC 24571. This norme helps to match the needs of learners with disabilities with appropriate accessible digital resources. However, when a visual resource doesn't have a textual adapted resource, it stays inaccessible. In this paper we present a novel approach having as objective, an automatic generation of adapted resources for digital images used like a pedagogical resources. Indeed, it makes it possible to provide automatically a textual and a semantic interpretation of the visual resources in order to make them accessible to all learners. To carry out our approach, we benefit from the techniques of image processing at end to make the conversion of raster images towards the format Scalable Vector Graphic (SVG), and to introduce semantic classification into SVG.

[1]  Sebastiano Battiato,et al.  Advanced SVG triangulation/polygonalization of digital images , 2005, IS&T/SPIE Electronic Imaging.

[2]  Sebastiano Battiato,et al.  SVG Rendering of Digital Images: an Overview , 2005 .

[3]  Lysandros Tsoulos,et al.  The potential of XML encoding in geomatics converting raster images to XML and SVG , 2006, Comput. Geosci..

[4]  Kacem Chehdi,et al.  Automatic image segmentation system through iterative edge - region co-operation , 2002, Image Vis. Comput..

[5]  C. Garbay,et al.  6 - Une approche opportuniste et coopérative pour la vision de bas niveau , 1995 .

[6]  Fernando Díaz del Río,et al.  Promoting accessibility by using metadata in the framework of a semantic-web driven CMS , 2005, Dublin Core Conference.

[7]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[8]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[9]  Céline Hudelot,et al.  Towards ontologies for image interpretation and annotation , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[10]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Jianping Fan,et al.  Incorporating concept ontology to enable probabilistic concept reasoning for multi-level image annotation , 2006, MIR '06.

[12]  Béchir el Ayeb,et al.  IMIOL: A SYSTEM FOR INDEXING IMAGES BY THEIR SEMANTIC CONTENT BASED ON POSSIBILISTIC FUZZY CLUSTERING AND ADAPTIVE RESONANCE THEORY NEURAL NETWORKS LEARNING , 2010, Appl. Artif. Intell..

[13]  Murat Kunt,et al.  Traitement numérique des images , 1993 .

[14]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[15]  Sebastiano Battiato,et al.  SVG rendering of real images using data dependent triangulation , 2004, SCCG '04.

[16]  Andreas Neumann Scalable Vector Graphics (SVG) , 2008, Encyclopedia of GIS.