Cryo-electron tomography: The challenge of doing structural biology in situ

Electron microscopy played a key role in establishing cell biology as a discipline, by producing fundamental insights into cellular organization and ultrastructure. Many seminal discoveries were made possible by the development of new sample preparation methods and imaging modalities. Recent technical advances include sample vitrification that faithfully preserves molecular structures, three-dimensional imaging by electron tomography, and improved image-processing methods. These new techniques have enabled the extraction of high fidelity structural information and are beginning to reveal the macromolecular organization of unperturbed cellular environments.

[1]  J. Carnoy La biologie cellulaire : étude comparée de la cellule dans les deux règnes , 1884 .

[2]  S B Newman,et al.  New Sectioning Techniques for Light and Electron Microscopy. , 1949, Science.

[3]  H LATTA,et al.  Use of a Glass Edge in Thin Sectioning for Electron Microscopy.∗ , 1950, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[4]  H. Fernández-morán A diamond knife for ultrathin sectioning. , 1953, Experimental cell research.

[5]  F. S. Sjostrand The ultrastructure of the innersegments of the retinal rods of the guinea pig eye as revealed by electron microscopy. , 1953, Journal of cellular and comparative physiology.

[6]  K. Porter,et al.  A study in microtomy for electron microscopy , 1953, The Anatomical record.

[7]  R. L. Steere,et al.  ELECTRON MICROSCOPY OF STRUCTURAL DETAIL IN FROZEN BIOLOGICAL SPECIMENS , 1957, The Journal of biophysical and biochemical cytology.

[8]  [Freeze-drying as a fixation technic for plant cells]. , 1957, Journal of ultrastructure research.

[9]  H. Müller Gefriertrocknung als fixierungsmethode an pflanzenzellen , 1957 .

[10]  H. Moor,et al.  A NEW FREEZING-ULTRAMICROTOME , 1961, The Journal of biophysical and biochemical cytology.

[11]  D. DeRosier,et al.  The reconstruction of a three-dimensional structure from projections and its application to electron microscopy , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  D. Branton Freeze-etching studies of membrane structure. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  D. Parsons,et al.  Electron Diffraction of Wet Proteins: Catalase , 1972, Science.

[14]  K. M. Zinn,et al.  Transmission electron microscopy. , 1973, International ophthalmology clinics.

[15]  R. Glaeser,et al.  Electron Diffraction of Frozen, Hydrated Protein Crystals , 1974, Science.

[16]  P. Ververgaert,et al.  Freeze-fracture morphology of biological membranes. , 1978, Biochimica et biophysica acta.

[17]  M. Dennis,et al.  Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release , 1979, The Journal of cell biology.

[18]  Erwin Mayer,et al.  Complete vitrification in pure liquid water and dilute aqueous solutions , 1980, Nature.

[19]  Albrecht Unsöld Deutsche Akademie der Naturforscher Leopoldina , 1980 .

[20]  Recollections on the Beginnings of The Journal of Cell Biology , 1981, The Journal of cell biology.

[21]  C. A. Walter,et al.  Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples , 1983, Journal of microscopy.

[22]  W. O. Saxton,et al.  Three-dimensional reconstruction of imperfect two-dimensional crystals. , 1984, Ultramicroscopy.

[23]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[24]  Reiner Hegerl,et al.  Towards automatic electron tomography , 1992 .

[25]  D A Agard,et al.  Automated microscopy for electron tomography. , 1992, Ultramicroscopy.

[26]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[27]  W. Baumeister,et al.  Perspectives of molecular and cellular electron tomography. , 1997, Journal of structural biology.

[28]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[29]  B. Humbel,et al.  Pre‐embedding immunolabeling for electron microscopy: An evaluation of permeabilization methods and markers , 1998, Microscopy research and technique.

[30]  Eyden Biomedical Electron Microscopy , 1999 .

[31]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[32]  H. Geuze A future for electron microscopy in cell biology? , 1999, Trends in cell biology.

[33]  A S Frangakis,et al.  Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. , 2001, Journal of structural biology.

[34]  D. Mastronarde,et al.  Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Heuser,et al.  Whatever happened to the ‘microtrabecular concept’? , 2002, Biology of the cell.

[36]  J. Frank Single-particle imaging of macromolecules by cryo-electron microscopy. , 2002, Annual review of biophysics and biomolecular structure.

[37]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[38]  W. Baumeister,et al.  Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography , 2002, Science.

[39]  P. Ball Portrait of a molecule , 2003, Nature.

[40]  Judith Klumperman,et al.  Electron microscopy in cell biology: integrating structure and function. , 2003, Nature reviews. Molecular cell biology.

[41]  José Jesús Fernández,et al.  An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. , 2003, Journal of structural biology.

[42]  J. Dubochet,et al.  Cryo-electron microscopy of vitreous sections of native biological cells and tissues. , 2004, Journal of structural biology.

[43]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[44]  R. Henderson Realizing the potential of electron cryo-microscopy , 2004, Quarterly Reviews of Biophysics.

[45]  W. Denk,et al.  Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure , 2004, PLoS biology.

[46]  Patrick Aloy,et al.  Ten thousand interactions for the molecular biologist , 2004, Nature Biotechnology.

[47]  A. B. Maunsbach,et al.  Biological ultrastructure research; the first 50 years. , 2004, Tissue & cell.

[48]  J. Dubochet,et al.  Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. , 2005, Journal of structural biology.

[49]  F. Förster,et al.  Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Friedrich Förster,et al.  Morphological characterization of molecular complexes present in the synaptic cleft. , 2005, Structure.

[51]  V. Lučić,et al.  Structural studies by electron tomography: from cells to molecules. , 2005, Annual review of biochemistry.

[52]  J. Frank,et al.  Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. , 2006, Journal of structural biology.

[53]  J. J. Fernández,et al.  CTF determination and correction in electron cryotomography. , 2006, Ultramicroscopy.

[54]  Julio O. Ortiz,et al.  Mapping 70S ribosomes in intact cells by cryoelectron tomography and pattern recognition. , 2006, Journal of structural biology.

[55]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[56]  J. Frank,et al.  Focused ion beam milling of vitreous water: prospects for an alternative to cryo‐ultramicrotomy of frozen‐hydrated biological samples , 2006, Journal of microscopy.

[57]  J. Dubochet,et al.  Luminal particles within cellular microtubules , 2006, The Journal of cell biology.

[58]  G. Jensen,et al.  The structure of FtsZ filaments in vivo suggests a force‐generating role in cell division , 2007, The EMBO journal.

[59]  S. Subramaniam,et al.  Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy , 2007, Proceedings of the National Academy of Sciences.

[60]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[61]  A. Miyazawa,et al.  A genetically encoded metallothionein tag enabling efficient protein detection by electron microscopy. , 2007, Journal of electron microscopy.

[62]  Robert Glaeser,et al.  Electron Crystallography of Biological Macromolecules , 2007 .

[63]  Filip Braet,et al.  Contribution of high‐resolution correlative imaging techniques in the study of the liver sieve in three‐dimensions , 2007, Microscopy research and technique.

[64]  A. Frangakis,et al.  The molecular architecture of cadherins in native epidermal desmosomes , 2007, Nature.

[65]  Tobias Bonhoeffer,et al.  Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. , 2007, Journal of structural biology.

[66]  D. DeRosier,et al.  Concatenated metallothionein as a clonable gold label for electron microscopy. , 2007, Journal of structural biology.

[67]  Florian Beck,et al.  Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. , 2007, Journal of structural biology.

[68]  Gareth Griffiths,et al.  Whole Cell Cryo-Electron Tomography Reveals Distinct Disassembly Intermediates of Vaccinia Virus , 2007, PloS one.

[69]  R. Schalek,et al.  Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy , 2007, Nature Methods.

[70]  Friedrich Förster,et al.  Snapshots of nuclear pore complexes in action captured by cryo-electron tomography , 2007, Nature.

[71]  J. McIntosh,et al.  Cryo‐fluorescence microscopy facilitates correlations between light and cryo‐electron microscopy and reduces the rate of photobleaching , 2007, Journal of microscopy.

[72]  Niels Galjart,et al.  Cryo electron tomography of vitrified fibroblasts: microtubule plus ends in situ. , 2008, Journal of structural biology.

[73]  Xiongwu Wu,et al.  Role of HAMP domains in chemotaxis signaling by bacterial chemoreceptors , 2008, Proceedings of the National Academy of Sciences.

[74]  Friedrich Förster,et al.  Classification of cryo-electron sub-tomograms using constrained correlation. , 2008, Journal of structural biology.

[75]  Andrew Leis,et al.  Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure , 2008, Proceedings of the National Academy of Sciences.

[76]  Mohamed Chami,et al.  Direct Visualization of the Outer Membrane of Mycobacteria and Corynebacteria in Their Native State , 2008, Journal of bacteriology.

[77]  Matthias Chiquet,et al.  Electron microscopy of high pressure frozen samples: bridging the gap between cellular ultrastructure and atomic resolution , 2008, Histochemistry and Cell Biology.

[78]  Achilleas S Frangakis,et al.  Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ , 2008, Proceedings of the National Academy of Sciences.

[79]  Robert M Glaeser,et al.  Retrospective: radiation damage and its associated "information limitations". , 2008, Journal of structural biology.

[80]  R. B. Jensen,et al.  Location and architecture of the Caulobacter crescentus chemoreceptor array , 2008, Molecular microbiology.

[81]  Abraham J Koster,et al.  Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. , 2009, European journal of cell biology.

[82]  R. Aebersold,et al.  Visual proteomics of the human pathogen Leptospira interrogans , 2009, Nature Methods.

[83]  W. Baumeister,et al.  Comparative cryo‐electron tomography of pathogenic Lyme disease spirochetes , 2009, Molecular microbiology.

[84]  J. Fontana,et al.  Visualization of proteins in intact cells with a clonable tag for electron microscopy. , 2009, Journal of structural biology.

[85]  Douglas J. Botkin,et al.  Intact Flagellar Motor of Borrelia burgdorferi Revealed by Cryo-Electron Tomography: Evidence for Stator Ring Curvature and Rotor/C-Ring Assembly Flexion , 2009, Journal of bacteriology.

[86]  G. McDermott,et al.  High‐aperture cryogenic light microscopy , 2009, Journal of microscopy.

[87]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[88]  K. Bui,et al.  Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella , 2009, The Journal of cell biology.

[89]  J. Löwe,et al.  Electron Cryomicroscopy of E. coli Reveals Filament Bundles Involved in Plasmid DNA Segregation , 2009, Science.

[90]  R. Henderson,et al.  Detective quantum efficiency of electron area detectors in electron microscopy , 2009, Ultramicroscopy.

[91]  K. Bui,et al.  Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis , 2010, Nature Structural &Molecular Biology.

[92]  Mark Horowitz,et al.  3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes. , 2010, Journal of structural biology.

[93]  Wolfgang Baumeister,et al.  The three-dimensional organization of polyribosomes in intact human cells. , 2010, Molecular cell.

[94]  Felix J. B. Bäuerlein,et al.  Micromachining tools and correlative approaches for cellular cryo-electron tomography. , 2010, Journal of structural biology.

[95]  B. Humbel,et al.  The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. , 2010, Journal of structural biology.

[96]  V. Lučić,et al.  Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography , 2010, The Journal of cell biology.

[97]  Julio O. Ortiz,et al.  Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ , 2010, The Journal of cell biology.

[98]  Wolfgang Baumeister,et al.  Distinct in situ structures of the Borrelia flagellar motor. , 2010, Journal of structural biology.

[99]  Wolfgang Baumeister,et al.  Positioning of large organelles by a membrane‐ associated cytoskeleton in Plasmodium sporozoites , 2010, Cellular microbiology.

[100]  G. Jensen,et al.  The metabolic enzyme CTP synthase forms cytoskeletal filaments , 2010, Nature Cell Biology.

[101]  Matthias Mann,et al.  Mass spectrometry–based proteomics in cell biology , 2010, The Journal of cell biology.

[102]  K. Nagayama,et al.  Phase plates for transmission electron microscopy. , 2010, Methods in enzymology.

[103]  V. Lučić,et al.  Cryo‐electron tomography: methodology, developments and biological applications , 2011, Journal of microscopy.

[104]  D. Nicastro,et al.  Cryo-electron tomography reveals conserved features of doublet microtubules in flagella , 2011, Proceedings of the National Academy of Sciences.

[105]  Anchi Cheng,et al.  Initial evaluation of a direct detection device detector for single particle cryo-electron microscopy. , 2011, Journal of structural biology.

[106]  Jacques Simpore,et al.  Hemoglobins S and C Interfere with Actin Remodeling in Plasmodium falciparum–Infected Erythrocytes , 2011, Science.

[107]  I. Hurbain,et al.  The future is cold: cryo‐preparation methods for transmission electron microscopy of cells , 2011, Biology of the cell.

[108]  P. Peters,et al.  Exploring vitreous cryo-section-induced compression at the macromolecular level using electron cryo-tomography; 80S yeast ribosomes appear unaffected. , 2011, Journal of structural biology.

[109]  K. Bui,et al.  Cryoelectron tomography of radial spokes in cilia and flagella , 2011, The Journal of cell biology.

[110]  Jan Löwe,et al.  A ferritin-based label for cellular electron cryotomography. , 2011, Structure.

[111]  Antonio Martinez-Sanchez,et al.  A differential structure approach to membrane segmentation in electron tomography. , 2011, Journal of structural biology.

[112]  G. Jensen,et al.  Electron tomography of cells , 2011, Quarterly Reviews of Biophysics.

[113]  Y. Fujiyoshi Electron crystallography for structural and functional studies of membrane proteins. , 2011, Journal of electron microscopy.

[114]  D. Nicastro,et al.  Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella* , 2011, The Journal of Biological Chemistry.

[115]  Xiongwu Wu,et al.  Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response , 2011, The EMBO journal.

[116]  Friedrich Frischknecht,et al.  Host actin remodeling and protection from malaria by hemoglobinopathies. , 2012, Trends in parasitology.

[117]  F. Förster,et al.  Structure and 3D arrangement of endoplasmic reticulum membrane-associated ribosomes. , 2012, Structure.

[118]  G. Jensen,et al.  Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins , 2012, Proceedings of the National Academy of Sciences.

[119]  Daniel Baum,et al.  Automated segmentation of electron tomograms for a quantitative description of actin filament networks. , 2012, Journal of structural biology.

[120]  O. Medalia,et al.  The human nuclear pore complex as revealed by cryo-electron tomography. , 2012, Structure.

[121]  P. Gönczy,et al.  Cartwheel Architecture of Trichonympha Basal Body , 2012, Science.

[122]  D. Agard,et al.  Three-dimensional structure of basal body triplet revealed by electron cryo-tomography , 2011, The EMBO journal.

[123]  W. Baumeister,et al.  Cryo-electron tomography : the realization of a vision , 2012 .

[124]  D. Nicastro,et al.  Three-dimensional structure of the radial spokes reveals heterogeneity and interactions with dyneins in Chlamydomonas flagella , 2012, Molecular biology of the cell.

[125]  Felix J. B. Bäuerlein,et al.  Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography , 2012, Proceedings of the National Academy of Sciences.

[126]  Felix J. B. Bäuerlein,et al.  Integrative approaches for cellular cryo-electron tomography: correlative imaging and focused ion beam micromachining. , 2012, Methods in cell biology.

[127]  Jose-Jesus Fernandez,et al.  Computational methods for electron tomography. , 2012, Micron.

[128]  Jun Liu,et al.  Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells , 2012, Proceedings of the National Academy of Sciences.

[129]  J. Briggs Structural biology in situ--the potential of subtomogram averaging. , 2013, Current opinion in structural biology.

[130]  Shoh M. Asano,et al.  Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering , 2013, The Journal of cell biology.

[131]  A. Koster,et al.  Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. , 2013, Journal of structural biology.

[132]  G. Jensen,et al.  The bacterial cytoskeleton: more than twisted filaments. , 2013, Current opinion in cell biology.