On the Densest MIMO Lattices From Cyclic Division Algebras
暂无分享,去创建一个
Camilla Hollanti | Jyrki T. Lahtonen | Kalle Ranto | Roope Vehkalahti | C. Hollanti | K. Ranto | J. Lahtonen | Roope Vehkalahti
[1] Siavash M. Alamouti,et al. A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..
[2] Hesham El Gamal,et al. A new approach to layered space-Time coding and signal processing , 2001, IEEE Trans. Inf. Theory.
[3] N. Jacobson,et al. Basic Algebra I , 1976 .
[4] Camilla Hollanti,et al. Construction Methods for Asymmetric and Multiblock Space–Time Codes , 2009, IEEE Transactions on Information Theory.
[5] A. Robert Calderbank,et al. Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.
[6] P. Ribenboim. Classical Theory Of Algebraic Numbers , 2001 .
[7] Camilla Hollanti,et al. New Space–Time Code Constructions for Two-User Multiple Access Channels , 2009, IEEE Journal of Selected Topics in Signal Processing.
[8] Karim Abed-Meraim,et al. Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.
[9] Frédérique E. Oggier,et al. Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.
[10] P. Vijay Kumar,et al. Perfect Space–Time Codes for Any Number of Antennas , 2007, IEEE Transactions on Information Theory.
[11] P. Vijay Kumar,et al. Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.
[12] Camilla Hollanti,et al. Optimal Matrix Lattices for MIMO Codes from Division Algebras , 2006, 2006 IEEE International Symposium on Information Theory.
[13] Frédérique E. Oggier,et al. Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.
[14] Lajos Rónyai,et al. Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..
[15] Michael P. Fitz,et al. Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1999, IEEE Trans. Commun..
[16] Emanuele Viterbo,et al. The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[17] Camilla Hollanti,et al. A New Tool: Constructing STBCs from Maximal Orders in Central Simple Algebras , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.
[18] C. Hollanti,et al. Maximal orders in space-time coding: Construction and decoding , 2008, 2008 International Symposium on Information Theory and Its Applications.
[19] Hofreiter. Structure of algebras , 1941 .
[20] B. Sundar Rajan,et al. STBC-schemes with non-vanishing determinant for certain number of transmit antennas , 2005, ISIT.
[21] Emil Artin,et al. Theory of algebraic numbers , 1959 .
[22] Genyuan Wang,et al. On optimal multilayer cyclotomic space-time code designs , 2005, IEEE Transactions on Information Theory.
[23] Sam Perlis. Maximal orders in rational cyclic algebras of composite degree , 1939 .
[24] B. Sundar Rajan,et al. Information-lossless STBCs from crossed-product algebras , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[25] Giuseppe Caire,et al. Space–Time Codes From Structured Lattices , 2008, IEEE Transactions on Information Theory.
[26] Lajos Rónyai,et al. Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.
[27] Camilla Hollanti,et al. On the algebraic structure of the Silver code: A 2 × 2 perfect space-time block code , 2008, 2008 IEEE Information Theory Workshop.
[28] Helmut Koch,et al. Number theory : algebraic numbers and functions , 2000 .
[29] Lizhong Zheng,et al. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.
[30] J. Belfiore,et al. Algebraic 3 × 3 , 4 × 4 and 6 × 6 Space-Time Codes with non-vanishing Determinants , 2004 .
[31] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[32] N. Jacobson,et al. Basic Algebra II , 1989 .
[33] Lajos Rónyai,et al. Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.
[34] B. Sundar Rajan,et al. STBC-schemes with nonvanishing determinant for certain number of transmit antennas , 2005, IEEE Transactions on Information Theory.
[35] B. Sundar Rajan,et al. STBCs using capacity achieving designs from crossed-product division algebras , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).
[36] J. Belfiore,et al. Algebraic 3x3, 4x4, 6x6 Space-Time Codes with non-vanishing Determinants , 2004 .
[37] J. Milne. Algebraic Number Theory , 1992 .
[38] Jean-Claude Belfiore,et al. Quaternionic lattices for space-time coding , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).
[39] Emanuele Viterbo,et al. The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.
[40] Camilla Hollanti,et al. Maximal Orders in the Design of Dense Space-Time Lattice Codes , 2008, IEEE Transactions on Information Theory.
[41] Helmut Koch. Number theory , 2000 .
[42] J. Neukirch. Algebraic Number Theory , 1999 .
[43] Roope Vehkalahti,et al. Class Field Theoretic Methods in the Design of Lattice Signal Constellations , 2008 .
[44] B. Sundar Rajan,et al. Information-Lossless Space–Time Block Codes From Crossed-Product Algebras , 2006, IEEE Transactions on Information Theory.
[45] B. Sundar Rajan,et al. Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.
[46] Christopher Holden,et al. Perfect Space-Time Block Codes , 2004 .