On the Densest MIMO Lattices From Cyclic Division Algebras

It is shown why the discriminant of a maximal order within a cyclic division algebra must be minimized in order to get the densest possible matrix lattices with a prescribed nonvanishing minimum determinant. Using results from class field theory, a lower bound to the minimum discriminant of a maximal order with a given center and index (= the number of Tx/Rx antennas) is derived. Also numerous examples of division algebras achieving the bound are given. For example, a matrix lattice with quadrature amplitude modulation (QAM) coefficients that has 2.5 times as many codewords as the celebrated Golden code of the same minimum determinant is constructed. Also, a general algorithm due to Ivanyos and Ronyai for finding maximal orders within a cyclic division algebra is described and enhancements to this algorithm are discussed. Also some general methods for finding cyclic division algebras of a prescribed index achieving the lower bound are proposed.

[1]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[2]  Hesham El Gamal,et al.  A new approach to layered space-Time coding and signal processing , 2001, IEEE Trans. Inf. Theory.

[3]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[4]  Camilla Hollanti,et al.  Construction Methods for Asymmetric and Multiblock Space–Time Codes , 2009, IEEE Transactions on Information Theory.

[5]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[6]  P. Ribenboim Classical Theory Of Algebraic Numbers , 2001 .

[7]  Camilla Hollanti,et al.  New Space–Time Code Constructions for Two-User Multiple Access Channels , 2009, IEEE Journal of Selected Topics in Signal Processing.

[8]  Karim Abed-Meraim,et al.  Diagonal algebraic space-time block codes , 2002, IEEE Trans. Inf. Theory.

[9]  Frédérique E. Oggier,et al.  Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.

[10]  P. Vijay Kumar,et al.  Perfect Space–Time Codes for Any Number of Antennas , 2007, IEEE Transactions on Information Theory.

[11]  P. Vijay Kumar,et al.  Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.

[12]  Camilla Hollanti,et al.  Optimal Matrix Lattices for MIMO Codes from Division Algebras , 2006, 2006 IEEE International Symposium on Information Theory.

[13]  Frédérique E. Oggier,et al.  Algebraic lattice constellations: bounds on performance , 2006, IEEE Transactions on Information Theory.

[14]  Lajos Rónyai,et al.  Computing the Structure of Finite Algebras , 1990, J. Symb. Comput..

[15]  Michael P. Fitz,et al.  Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels , 1999, IEEE Trans. Commun..

[16]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Camilla Hollanti,et al.  A New Tool: Constructing STBCs from Maximal Orders in Central Simple Algebras , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[18]  C. Hollanti,et al.  Maximal orders in space-time coding: Construction and decoding , 2008, 2008 International Symposium on Information Theory and Its Applications.

[19]  Hofreiter Structure of algebras , 1941 .

[20]  B. Sundar Rajan,et al.  STBC-schemes with non-vanishing determinant for certain number of transmit antennas , 2005, ISIT.

[21]  Emil Artin,et al.  Theory of algebraic numbers , 1959 .

[22]  Genyuan Wang,et al.  On optimal multilayer cyclotomic space-time code designs , 2005, IEEE Transactions on Information Theory.

[23]  Sam Perlis Maximal orders in rational cyclic algebras of composite degree , 1939 .

[24]  B. Sundar Rajan,et al.  Information-lossless STBCs from crossed-product algebras , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[25]  Giuseppe Caire,et al.  Space–Time Codes From Structured Lattices , 2008, IEEE Transactions on Information Theory.

[26]  Lajos Rónyai,et al.  Finding maximal orders in semisimple algebras over Q , 1993, computational complexity.

[27]  Camilla Hollanti,et al.  On the algebraic structure of the Silver code: A 2 × 2 perfect space-time block code , 2008, 2008 IEEE Information Theory Workshop.

[28]  Helmut Koch,et al.  Number theory : algebraic numbers and functions , 2000 .

[29]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[30]  J. Belfiore,et al.  Algebraic 3 × 3 , 4 × 4 and 6 × 6 Space-Time Codes with non-vanishing Determinants , 2004 .

[31]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[32]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[33]  Lajos Rónyai,et al.  Algorithmic properties of maximal orders in simple algebras over Q , 1992, computational complexity.

[34]  B. Sundar Rajan,et al.  STBC-schemes with nonvanishing determinant for certain number of transmit antennas , 2005, IEEE Transactions on Information Theory.

[35]  B. Sundar Rajan,et al.  STBCs using capacity achieving designs from crossed-product division algebras , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[36]  J. Belfiore,et al.  Algebraic 3x3, 4x4, 6x6 Space-Time Codes with non-vanishing Determinants , 2004 .

[37]  J. Milne Algebraic Number Theory , 1992 .

[38]  Jean-Claude Belfiore,et al.  Quaternionic lattices for space-time coding , 2003, Proceedings 2003 IEEE Information Theory Workshop (Cat. No.03EX674).

[39]  Emanuele Viterbo,et al.  The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.

[40]  Camilla Hollanti,et al.  Maximal Orders in the Design of Dense Space-Time Lattice Codes , 2008, IEEE Transactions on Information Theory.

[41]  Helmut Koch Number theory , 2000 .

[42]  J. Neukirch Algebraic Number Theory , 1999 .

[43]  Roope Vehkalahti,et al.  Class Field Theoretic Methods in the Design of Lattice Signal Constellations , 2008 .

[44]  B. Sundar Rajan,et al.  Information-Lossless Space–Time Block Codes From Crossed-Product Algebras , 2006, IEEE Transactions on Information Theory.

[45]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[46]  Christopher Holden,et al.  Perfect Space-Time Block Codes , 2004 .