Large Scale Gaussian Mixture Modelling using a Greedy Expectation-Maximisation Algorithm

[1]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[2]  Sanjoy Dasgupta,et al.  Learning mixtures of Gaussians , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[3]  Andrew W. Moore,et al.  Very Fast EM-Based Mixture Model Clustering Using Multiresolution Kd-Trees , 1998, NIPS.

[4]  Robert F. Sproull,et al.  Refinements to nearest-neighbor searching ink-dimensional trees , 1991, Algorithmica.

[5]  Andrew W. Moore,et al.  Accelerating exact k-means algorithms with geometric reasoning , 1999, KDD '99.

[6]  Andrew R. Barron,et al.  Mixture Density Estimation , 1999, NIPS.

[7]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[9]  Ben J. A. Kröse,et al.  Efficient Greedy Learning of Gaussian Mixture Models , 2003, Neural Computation.

[10]  Sanjay Ranka,et al.  An effic ient k-means clustering algorithm , 1997 .

[11]  Nikos A. Vlassis,et al.  A Greedy EM Algorithm for Gaussian Mixture Learning , 2002, Neural Processing Letters.

[12]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[13]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[14]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.