A Convolutional Neural Network for Network Intrusion Detection System

System administrators can benefit from deploying Network Intrusion Detection Systems (NIDS) to find potential security breaches. However, security attacks tend to be unpredictable. There are many challenges to develop a flexible and effective NIDS in order to prevent high false alarm rates and low detection accuracy against unknown attacks. In this paper, we propose a deep learning method to implement an effective and flexible NIDS. We used a convolutional neural network (CNN), an advanced deep learning technique, on NSL-KDD, a benchmark dataset for network intrusion. Our experimental results of a 99.79% detection rate when compared against the NSL-KDD test dataset show that CNNs can be applied as a learning method for Intrusion Detection Systems (IDSs).