Solid State Enabled Reversible Four Electron Storage

We report that a solid‐state battery architecture enables the reversible, four electron storage of fully utilized solvothermally synthesized cubic‐FeS2 (pyrite). With a sulfide based glass electrolyte we successfully confine electro‐active species and permit the safe use of a lithium metal anode. These FeS2/Li solid‐state cells deliver a theoretical specific capacity of 894 mAh g−1 at 60 °C. We find that nanoparticles of orthorhombic‐FeS2 (marcasite) are generated upon recharge at 30–60 °C which explains a coincident change in rate kinetics.

[1]  Thomas A. Yersak,et al.  In situ lithiation of TiS2 enabled by spontaneous decomposition of Li3N , 2011 .

[2]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[3]  J. Barker,et al.  The electrochemical insertion and safety properties of the low-cost Li-ion active material, Li 2FeS , 2011 .

[4]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[5]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[6]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[7]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[8]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[9]  Y. Yamaguchi,et al.  Ab Initio Simulations of Li/Pyrite- MS2 ( M = Fe , Ni ) Battery Cells , 2010 .

[10]  Qihua Wang,et al.  Controlled growth of pyrite FeS2 crystallites by a facile surfactant-assisted solvothermal method , 2010 .

[11]  Sehee Lee,et al.  Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries , 2010 .

[12]  E. Shembel’,et al.  Study of electrochemical processes occurring on FeS2 electrode in liquid nonaqueous electrolytes of lithium battery , 2009 .

[13]  Sehee Lee,et al.  Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries , 2009 .

[14]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[15]  H. Ahn,et al.  Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode , 2006 .

[16]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[17]  S. Greenbaum,et al.  X-ray absorption spectroscopy of highly cycled Li/composite polymer electrolyte/FeS2 cells , 2003 .

[18]  E. Peled,et al.  To the electrochemistry of pyrite in Li/solid composite-polymer-electrolyte battery , 2003 .

[19]  L. A. Montoro,et al.  Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery , 2003 .

[20]  Y. Shao-horn,et al.  Nano- FeS2 for Commercial Li / FeS2 Primary Batteries , 2002 .

[21]  B. Scrosati,et al.  Rechargeable lithium/hybrid-electrolyte/pyrite battery , 2002 .

[22]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[23]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[24]  E. Peled,et al.  Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries , 1999 .

[25]  S. Kondo,et al.  Lithium iron sulfide as an electrode material in a solid state lithium battery , 1999 .

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  E. Peled,et al.  Li/CPE/FeS2 rechargeable battery , 1998 .

[28]  I. Bae,et al.  In Situ Fe K-Edge X-ray Absorption Fine Structure of a Pyrite Electrode in a Li/Polyethylene Oxide(LiClO4)/FeS2 Battery Environment , 1997 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  Diana Golodnitsky,et al.  Development and characterization of bipolar lithium composite polymer electrolyte (CPE)-FeS2 battery for applications in electric vehicles , 1995 .

[31]  V. Garg,et al.  Magnetic properties of iron marcasite FeS2 , 1991 .

[32]  R. Mcmillan,et al.  An iron-57 Moessbauer study of the intermediates formed in the reduction of iron disulfide in the lithium/iron disulfide battery system , 1991 .

[33]  J. Dahn,et al.  Electrochemistry of Pyrite‐Based Cathodes for Ambient Temperature Lithium Batteries , 1989 .

[34]  A. Méhauté,et al.  Chemical and electrochemical study of the LixFeS2 cathodic system (0 < x ⩽ 2) , 1980 .

[35]  R. Mcmillan,et al.  Iron-57 Moessbauer spectroscopy of reduced cathodes in the lithium/iron disulfide battery system: evidence for superparamagnetism , 1990 .