Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum

Acellular slime mould Physarum polycephalum is a popular now user-friendly living substrate for designing of future and emergent sensing and computing devices. P. polycephalum exhibits regular patterns of oscillations of its surface electrical potential. The oscillation patterns are changed when the slime mould is subjected to mechanical, chemical, electrical or optical stimuli. We evaluate feasibility of slime-mould based colour sensors by illuminating Physarum with red, green, blue and white colours and analysing patterns of the slime mould's electrical potential oscillations. We define that the slime mould recognises a colour if it reacts to illumination with the colour by a unique changes in amplitude and periods of oscillatory activity. In laboratory experiments we found that the slime mould recognises red and blue colour. The slime mould does not differentiate between green and white colours. The slime mould also recognises when red colour is switched off. We also map colours to diversity of the oscillations: illumination with a white colour increases diversity of amplitudes and periods of oscillations, other colours studied increase diversity either of amplitude or period.

[1]  H. P. Rusch,et al.  Sporulation in Physarum polycephalum: a model system for studies on differentiation. , 1969, Experimental cell research.

[2]  J. Vacanti,et al.  Endothelialized Networks with a Vascular Geometry in Microfabricated Poly(dimethyl siloxane) , 2004 .

[3]  Andrew Adamatzky,et al.  Slime mould logical gates: exploring ballistic approach , 2010, 1005.2301.

[4]  L. V. Heilbrunn,et al.  The Electric Charge of Protoplasmic Colloids , 1939, Physiological Zoology.

[5]  Andrew Schumann,et al.  PHYSARUM SPATIAL LOGIC , 2011 .

[6]  Andrew Adamatzky,et al.  Slime Mould Memristors , 2013, 1306.3414.

[7]  Andrew Adamatzky,et al.  Slime mould tactile sensor , 2013, ArXiv.

[8]  T Takahashi,et al.  Light Irradiation Induces Fragmentation of the Plasmodium, a Novel Photomorphogenesis in the True Slime Mold Physarum polycephalum: Action Spectra and Evidence for Involvement of the Phytochrome¶ , 2001, Photochemistry and photobiology.

[9]  R. Meyer,et al.  Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. , 1979, Cell biology international reports.

[10]  Andrew Schumann,et al.  Physarum Chip Project: Growing Computers From Slime Mould , 2012, Int. J. Unconv. Comput..

[11]  W. Marwan,et al.  A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum , 1995, FEBS letters.

[12]  Andrew Adamatzky,et al.  Are Slime Moulds Living Memristors? , 2013, ArXiv.

[13]  H. P. Rusch,et al.  Morphological observations on growth and differentation of Physarum polycephalum grown in pure culture. , 1961, Developmental biology.

[14]  M H Weisenseel,et al.  Ionic currents traverse the slime mould physarum. , 1981, Cell biology international reports.

[15]  Andrew I. Adamatzky,et al.  Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals , 2013, Communicative & integrative biology.

[16]  T. Nakagaki,et al.  Intelligence: Maze-solving by an amoeboid organism , 2000, Nature.

[17]  N. Kamiya,et al.  Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow , 1950 .

[18]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[19]  W. Korohoda,et al.  The blue-light reaction in plasmodia of Physarum polycephalum is coupled to respiration , 1983, Planta.

[20]  Andrew Adamatzky,et al.  Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum , 2013, ArXiv.

[21]  T. Iwamura,et al.  Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum , 1949 .

[22]  I Block,et al.  Blue light as a medium to influence oscillatory contraction frequency in Physarum. , 1981, Cell biology international reports.

[23]  Andrew Adamatzky,et al.  Steering plasmodium with light: Dynamical programming of Physarum machine , 2009, ArXiv.

[24]  T. Ueda,et al.  Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. , 1999, Biophysical chemistry.

[25]  U. Achenbach,et al.  Synchronization and signal transmission in protoplasmic strands of Physarum , 1981, Planta.

[26]  A. Hildebrandt,et al.  A morphogen for the sporulation of Physarum polycephalum detected by cell fusion experiments. , 1986, Experimental cell research.

[27]  D. Gradmann,et al.  Electrical properties of the plasma membrane of microplasmodia ofPhysarum polycephalum , 2005, The Journal of Membrane Biology.

[28]  I Block,et al.  The pathway of photosensory transduction in Physarum polycephalum. , 1981, Cell biology international reports.

[29]  Andrew Adamatzky,et al.  Physarum wires: Self-growing self-repairing smart wires made from slime mould , 2013, Biomedical Engineering Letters.

[30]  J. Białczyk,et al.  AN ACTION SPECTRUM FOR LIGHT AVOIDANCE BY PHYSARUM NUDUM PLASMODIA , 1979 .

[31]  W Seifriz A theory of protoplasmic streaming , 1937, Protoplasma.

[32]  U. Kishimoto,et al.  RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM , 1958, The Journal of general physiology.

[33]  Nicola Vitiello,et al.  Synthetic and Bio-Artificial Tactile Sensing: A Review , 2013, Sensors.

[34]  T. Schreckenbach,et al.  Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Ueda,et al.  Patterns in the distribution of intracellular ATP concentration in relation to coordination of amoeboid cell behavior in Physarum polycephalum. , 1987, Experimental cell research.

[36]  Richard Mayne,et al.  On loading slime mould Physarum polycephalum with metallic particles , 2013 .

[37]  A. Tero,et al.  Minimum-risk path finding by an adaptive amoebal network. , 2007, Physical review letters.

[38]  Jeff Jones,et al.  Slime Mould Inspired Generalised Voronoi Diagrams with Repulsive Fields , 2015, ArXiv.

[39]  Andrew Adamatzky,et al.  Developing Proximity Graphs by Physarum polycephalum: Does the Plasmodium Follow the Toussaint Hierarchy? , 2009, Parallel Process. Lett..

[40]  Jeff Jones,et al.  ON ELECTRICAL CORRELATES OF PHYSARUM POLYCEPHALUM SPATIAL ACTIVITY: CAN WE SEE PHYSARUM MACHINE IN THE DARK? , 2010, 1012.1809.

[41]  U. Achenbach,et al.  Synchronization and signal transmission in protoplasmic strands ofPhysarum , 2004, Planta.

[42]  Tomohiro Shirakawa,et al.  On Simultaneous Construction of Voronoi Diagram and Delaunay Triangulation by Physarum polycephalum , 2009, Int. J. Bifurc. Chaos.

[43]  Tomohiro Shirakawa,et al.  An associative learning experiment using the plasmodium of Physarum polycephalum , 2011, Nano Commun. Networks.

[44]  K. Starón,et al.  Light-induced transient increase of the activity of topoisomerase I in plasmodia of Physarum polycephalum , 1992 .