System Identification and Control using Adaptive Particle Swarm Optimization

Abstract This paper presents a methodology for finding optimal system parameters and optimal control parameters using a novel adaptive particle swarm optimization (APSO) algorithm. In the proposed APSO, every particle dynamically adjusts inertia weight according to feedback taken from particles’ best memories. The main advantages of the proposed APSO are to achieve faster convergence speed and better solution accuracy with minimum incremental computational burden. In the beginning we attempt to utilize the proposed algorithm to identify the unknown system parameters the structure of which is assumed to be known previously. Next, according to the identified system, PID gains are optimally found by also using the proposed algorithm. Two simulated examples are finally given to demonstrate the effectiveness of the proposed algorithm. The comparison to PSO with linearly decreasing inertia weight (LDW-PSO) and genetic algorithm (GA) exhibits the APSO-based system’s superiority.

[1]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[2]  Amitava Chatterjee,et al.  Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization , 2006, Comput. Oper. Res..

[3]  Rong-Fong Fung,et al.  The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach , 2006 .

[4]  Chia-Nan Ko,et al.  A PSO method with nonlinear time-varying evolution based on neural network for design of optimal harmonic filters , 2009, Expert Syst. Appl..

[5]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[6]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[7]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[8]  T. K. Radhakrishnan,et al.  Real-coded genetic algorithm for system identification and controller tuning , 2009 .

[9]  Hamidreza Modares,et al.  Parameter identification of chaotic dynamic systems through an improved particle swarm optimization , 2010, Expert Syst. Appl..

[10]  Rachid Mansouri,et al.  Vector Fitting fractional system identification using particle swarm optimization , 2008, Appl. Math. Comput..

[11]  Jiangye Yuan,et al.  A modified particle swarm optimizer with dynamic adaptation , 2007, Appl. Math. Comput..

[12]  Hamidreza Modares,et al.  Parameter estimation of bilinear systems based on an adaptive particle swarm optimization , 2010, Eng. Appl. Artif. Intell..

[13]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[14]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[15]  Yih-Lon Lin,et al.  A particle swarm optimization approach to nonlinear rational filter modeling , 2008, Expert Syst. Appl..

[16]  Leandro dos Santos Coelho,et al.  Model-free adaptive control optimization using a chaotic particle swarm approach , 2009 .

[17]  J. Boaventura Cunha,et al.  Greenhouse air temperature predictive control using the particle swarm optimisation algorithm , 2005 .

[18]  L. Coelho,et al.  PID control design for chaotic synchronization using a tribes optimization approach , 2009 .

[19]  Marzuki Khalid,et al.  Tuning of a neuro-fuzzy controller by genetic algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[20]  Sakti Prasad Ghoshal,et al.  INTELLIGENT PARTICLE SWARM OPTIMIZED FUZZY PID CONTROLLER FOR AVR SYSTEM , 2007 .

[21]  Wei-Der Chang,et al.  Nonlinear system identification and control using a real-coded genetic algorithm , 2007 .

[22]  A. Visioli Tuning of PID controllers with fuzzy logic , 2001 .

[23]  Xingsheng Gu,et al.  A dynamic inertia weight particle swarm optimization algorithm , 2008 .

[24]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[25]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[26]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[27]  Leandro dos Santos Coelho,et al.  Multi-step ahead nonlinear identification of Lorenz’s chaotic system using radial basis neural network with learning by clustering and particle swarm optimization , 2008 .

[28]  Nasser Sadati,et al.  Design of a fractional order PID controller for an AVR using particle swarm optimization , 2009 .