Visual Indexing and Retrieval

The research in content-based indexing and retrieval of visual information such as images and video has become one of the most populated directions in the vast area of information technologies. Social networks such as YouTube, Facebook, FileMobile, and DailyMotion host and supply facilities for accessing a tremendous amount of professional and user generated data. The areas of societal activity, such as, video protection and security, also generate thousands and thousands of terabytes of visual content. This book presents the most recent results and important trends in visual information indexing and retrieval. It is intended for young researchers, as well as, professionals looking for an algorithmic solution to a problem.

[1]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[2]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[3]  Jenny Benois-Pineau,et al.  Extraction of foreground objects from an MPEG2 video stream in rough-indexing framework , 2003, IS&T/SPIE Electronic Imaging.

[4]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[5]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[6]  Matthieu Cord,et al.  Active Learning Methods for Interactive Image Retrieval , 2008, IEEE Transactions on Image Processing.

[7]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[8]  Alper Yilmaz,et al.  Level Set Methods , 2007, Wiley Encyclopedia of Computer Science and Engineering.

[9]  Matthieu Cord,et al.  An efficient system for combining complementary kernels in complex visual categorization tasks , 2010, 2010 IEEE International Conference on Image Processing.

[10]  Yasuo Ariki,et al.  Scale-invariant proximity graph for fast probabilistic object recognition , 2010, CIVR '10.

[11]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[12]  Mubarak Shah,et al.  A 3-dimensional sift descriptor and its application to action recognition , 2007, ACM Multimedia.

[13]  Cordelia Schmid,et al.  Evaluation of Local Spatio-temporal Features for Action Recognition , 2009, BMVC.

[14]  Arturo Serna Implementation of Hierarchical Clustering Methods , 1996 .

[15]  Shin'ichi Satoh,et al.  Indexing local configurations of features for scalable content-based video copy detection , 2009, LS-MMRM '09.

[16]  Francesco Orabona,et al.  Ultra-Fast Optimization Algorithm for Sparse Multi Kernel Learning , 2011, ICML.

[17]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[18]  Khalifa Djemal,et al.  Multi-model classification method in heterogeneous image databases , 2010, Pattern Recognit..

[19]  I. Patras,et al.  Spatiotemporal salient points for visual recognition of human actions , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Andrew Zisserman,et al.  A Boundary-Fragment-Model for Object Detection , 2006, ECCV.

[21]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Manik Varma,et al.  More generality in efficient multiple kernel learning , 2009, ICML '09.

[23]  Alan F. Smeaton,et al.  The scholarly impact of TRECVid (2003-2009) , 2011, J. Assoc. Inf. Sci. Technol..

[24]  William B. March,et al.  Linear-time Algorithms for Pairwise Statistical Problems , 2009, NIPS.

[25]  Antonio Torralba,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 80 Million Tiny Images: a Large Dataset for Non-parametric Object and Scene Recognition , 2022 .

[26]  Patrick Gallinari,et al.  Ranking with ordered weighted pairwise classification , 2009, ICML '09.

[27]  Hichem Sahbi,et al.  Context-Dependent Kernels for Object Classification , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Barbara Caputo,et al.  Recognizing human actions: a local SVM approach , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[29]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[30]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[31]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[33]  Radu Horaud,et al.  Finding Geometric and Relational Structures in an Image , 1990, ECCV.

[34]  Andrew McCallum,et al.  Toward Optimal Active Learning through Sampling Estimation of Error Reduction , 2001, ICML.

[35]  Antonio Torralba,et al.  Small codes and large image databases for recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[37]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[38]  Bernt Schiele,et al.  Object Recognition Using Multidimensional Receptive Field Histograms , 1996, ECCV.

[39]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[40]  Cordelia Schmid,et al.  Spatial Weighting for Bag-of-Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Zhe Wang,et al.  Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search , 2007, VLDB.

[42]  Jay Yagnik,et al.  SPEC hashing: Similarity preserving algorithm for entropy-based coding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Its'hak Dinstein,et al.  Using Simple Decomposition for Smoothing and Feature Point Detection of Noisy Digital Curves , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Jiebo Luo,et al.  Improved scene classification using efficient low-level features and semantic cues , 2004, Pattern Recognit..

[46]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[47]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[51]  Jenny Benois-Pineau,et al.  Multi-layer Local Graph Words for Object Recognition , 2012, MMM.

[52]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[53]  Klaus-Robert Müller,et al.  Efficient and Accurate Lp-Norm Multiple Kernel Learning , 2009, NIPS.

[54]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[55]  Hichem Sahbi,et al.  Robust matching and recognition using context-dependent kernels , 2008, ICML '08.

[56]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[57]  Shih-Fu Chang,et al.  Semi-supervised hashing for scalable image retrieval , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Andrew Zisserman,et al.  Multiple kernels for object detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[59]  Stefano Soatto,et al.  Proximity Distribution Kernels for Geometric Context in Category Recognition , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[60]  B Julesz,et al.  Experiments in the visual perception of texture. , 1975, Scientific American.

[61]  Kristen Grauman Matching sets of features for efficient retrieval and recognition , 2006 .

[62]  Olivier Buisson,et al.  Scalable mining of large video databases using copy detection , 2008, ACM Multimedia.

[63]  Sylvie Philipp-Foliguet,et al.  Windows and facades retrieval using similarity on graph of contours , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[64]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[65]  J. Morel,et al.  A multiscale algorithm for image segmentation by variational method , 1994 .

[66]  Jiahua Wu,et al.  Rotation invariant classification of 3D surface texture using photometric stereo , 2003 .

[67]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors Based on 3D Objects , 2005, ICCV.

[68]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[69]  Trevor Darrell,et al.  Pyramid Match Hashing: Sub-Linear Time Indexing Over Partial Correspondences , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[71]  Emine Yilmaz,et al.  Estimating average precision with incomplete and imperfect judgments , 2006, CIKM '06.

[72]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Farzin Mokhtarian,et al.  Robust Image Corner Detection Through Curvature Scale Space , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Edward Y. Chang,et al.  Efficient top-k hyperplane query processing for multimedia information retrieval , 2006, MM '06.

[75]  Olivier Buisson,et al.  A posteriori multi-probe locality sensitive hashing , 2008, ACM Multimedia.

[76]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[77]  Ivan Laptev,et al.  Local Descriptors for Spatio-temporal Recognition , 2004, SCVMA.

[78]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[79]  Mohamed-Jalal Fadili,et al.  Region-Based Active Contours with Exponential Family Observations , 2009, Journal of Mathematical Imaging and Vision.

[80]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[81]  B. Julesz,et al.  Visual discrimination of textures with identical third-order statistics , 1978, Biological Cybernetics.

[82]  Shuicheng Yan,et al.  Weakly-supervised hashing in kernel space , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[83]  Edward Y. Chang,et al.  Active Learning for Interactive Multimedia Retrieval , 2008, Proceedings of the IEEE.

[84]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[85]  Antonio Torralba,et al.  Spectral Hashing , 2008, NIPS.

[86]  Cordelia Schmid,et al.  Learning realistic human actions from movies , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[87]  Jeffrey Xu Yu,et al.  Efficient similarity joins for near-duplicate detection , 2011, TODS.

[88]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[89]  Hervé Le Men,et al.  Scale-Sets Image Analysis , 2005, International Journal of Computer Vision.

[90]  Olivier Buisson,et al.  Random maximum margin hashing , 2011, CVPR 2011.

[91]  Jenny Benois-Pineau,et al.  Comparison of shot boundary detectors , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[92]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[93]  Matthieu Cord,et al.  Combining visual dictionary, kernel-based similarity and learning strategy for image category retrieval , 2008, Comput. Vis. Image Underst..

[94]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[95]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2008, Commun. ACM.

[96]  Andrew Blake,et al.  Contour-based learning for object detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[97]  Ivan Laptev,et al.  On Space-Time Interest Points , 2005, International Journal of Computer Vision.

[98]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[99]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, International Journal of Computer Vision.

[100]  Hongsheng Li,et al.  Object matching with a locally affine-invariant constraint , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[101]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[102]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[103]  Robert M. Haralick,et al.  Structural Descriptions and Inexact Matching , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[104]  Josef Kittler,et al.  A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification , 2009, 2009 Seventh International Workshop on Content-Based Multimedia Indexing.

[105]  Michael Werman,et al.  A Linear Time Histogram Metric for Improved SIFT Matching , 2008, ECCV.

[106]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[107]  Qi Tian,et al.  Visual Synset: Towards a higher-level visual representation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[108]  Luc Van Gool,et al.  An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector , 2008, ECCV.

[109]  Rong Jin,et al.  Semi-supervised SVM batch mode active learning for image retrieval , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[110]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[111]  Michael Werman,et al.  The Quadratic-Chi Histogram Distance Family , 2010, ECCV.

[112]  Yoram Singer,et al.  Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.

[113]  G. Medioni,et al.  Corner detection and curve representation using cubic B-splines , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[114]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[115]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[116]  Thorsten Joachims,et al.  Training linear SVMs in linear time , 2006, KDD '06.

[117]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[118]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[119]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[120]  Edward Y. Chang,et al.  Active learning in very large databases , 2006, Multimedia Tools and Applications.

[121]  Luc Van Gool,et al.  Wide Baseline Stereo Matching based on Local, Affinely Invariant Regions , 2000, BMVC.

[122]  Alain Rakotomamonjy,et al.  Kernel on Bag of Paths For Measuring Similarity of Shapes , 2007, ESANN.

[123]  David Picard,et al.  Improving image similarity with vectors of locally aggregated tensors , 2011, 2011 18th IEEE International Conference on Image Processing.

[124]  Shuicheng Yan,et al.  Non-Metric Locality-Sensitive Hashing , 2010, AAAI.

[125]  Jenny Benois-Pineau,et al.  Scalable object-based video retrieval in HD video databases , 2010, Signal Process. Image Commun..

[126]  Sylvie Philipp-Foliguet,et al.  Extraction of Windows in Facade Using Kernel on Graph of Contours , 2009, SCIA.

[127]  James Lee Hafner,et al.  Efficient Color Histogram Indexing for Quadratic Form Distance Functions , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[128]  Kristen Grauman,et al.  Kernelized locality-sensitive hashing for scalable image search , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[129]  Jenny Benois-Pineau,et al.  The Argos Campaign: Evaluation of Video Analysis Tools , 2007, 2007 International Workshop on Content-Based Multimedia Indexing.

[130]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[131]  Vladimir Vapnik Estimations of dependences based on statistical data , 1982 .

[132]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[133]  Isabelle Guyon,et al.  Automatic Capacity Tuning of Very Large VC-Dimension Classifiers , 1992, NIPS.

[134]  Guojun Lu,et al.  Improved Spatial Pyramid Matching for Image Classification , 2010, ACCV.